

Mechanical seal technology and selection

Technical information

Seal selection by media

Content and other brochures

Technical information Mechanical seal selection by media **Additional information** Index TotalSealCareOutside back cover Short legend Fold-out page at back cover EagleBurgmann – Your System Supplier Mechanical seals, Magnetic couplings Important note Catalog 150 pages (Code: DMS MSE) Separately available brochures offer information about additional product lines as well as notes on the All the technical specifications are based on extensive technology and selection of mechanical seals. tests and our many years of experience. However, the The complete range of seals from EagleBurgmann: diversity of possible applications means that they can All products can be retrieved interactively from serve as guide values only. eagleburgmann.com. Among others, you will find Pump seals, agitator seals, compressor seals, and current data sheets in PDF format available for magnetic couplings. It should be noted that the extremal values of each download here. operating parameter cannot be applied at the same time because of their interaction. Furthermore, the operating range of each specific product depends on the respective shaft diameter, materials used, mode of operation and on the medium to be sealed. A guarantee can only be given in the individual case if the exact conditions of application are known and these are confirmed in a special agreement. When critical Seal supply systems **Carbon floating ring seals** conditions of operation are involved, we recommend consulting with our specialist engineers. Brochure 32 Pages (Code: EBES) Brochure 84 Pages (Code: DMS_SSE) Subject to change. Maintenance-free, compact cartridge labyrinth seals with The entire product portfolio of systems and components long service life and best performance from EagleBurgmann-Espey. For the sealing of gases, dust and for the cooling, flushing, pressurization and supplying of vapors in turbines, fans, compressors, centrifuges and liquid and gas-lubricated mechanical seals, e.g. quench and Thermosiphon systems, heat exchangers, buffer mills pressure systems, leakage monitoring and API682-compliant supply systems.

1

Our products – as varied as our customers

EagleBurgmann products deliver safe, reliable sealing performance in any application including oil pumping and cracking, gas compression, process gas containment, phase separation or synthesis of chemical substances, pipeline sealing, dairy product filling or compensation of temperature expansion in flue gas systems.

Our challenge is to design seals that are able to withstand a wide range of media, different aggregate states and varying pressure and temperature and to provide special solutions for small installation up to seal contact areas of several meters. Every application has its own special requirements profile, and our job is to provide the best sealing solution.

The EagleBurgmann portfolio:

A product range with an unlimited horizon. EagleBurgmann is one of the world's leading manufacturer of industrial sealing solutions. Our extensive portfolio includes everything from standard seals to one-off application-specific designs:

- Mechanical seals
- Magnetic couplings
- Seal supply systems
- Carbon floating ring seals
- Compression packings
- Gaskets
- Expansion joints
- Special products
- TotalSealCare Services

Total commitment to quality excellence.

Outstanding quality is the top priority at EagleBurgmann. Our products are designed for user-friendly installation, optimal functionality and long service life. Our R&D activities, advanced quality management system, in-house test facilities and in-depth engineering expertise ensure that our seals meet the most demanding customer expectations. Starting right back in the development phase, our employees continually verify the quality of our products, and we carry out systematic inspection and testing to guarantee that customers are getting top quality.

Proud of the trust which our customers place in us.

EagleBurgmann is a dependable, competent partner. Our customers are always in total control of the media in their pumps, agitators, compressors, blowers, turbines, valves and pipeline systems even when operating conditions are extremely harsh. There is good reason why customers in the oil & gas, refinery, chemical, energy, food processing, paper, water, marine, aerospace, mining and other industries choose EagleBurgmann as their sealing solutions supplier.

In this brochure we collected some important and interesting technical information about the mechanical seals section. You can find – besides technical basic information – notes on design, installation and operation and also useful theoretical articles. In case of any queries, please do not hesitate to contact us.

Additional options for agitator seals	. 7
Axial run-out	16
Balance ratio	. 8
Barrier medium	17
Circulation Systems to API 682	18
Coatings for sliding faces	
Code system for agitator seals	
Code system for API 682 seals	21
Code system for mechanical seals	
Coefficient of friction	. 8
Concentricity tolerance	
Conical spring	
Cooling water requirements	
DiamondFace	
Gap width	. 8
Gas-lubricated seals principle	13
Heat transfer	. 9
Leakage rate	11
Load factor	. 8
Mechanical seal installation	16
O-Ring extrusion characteristics	
Power consumption	10
Pressure vessel regulations	17
Prior to installation.	15
Pumping screws	
Screw locking	
Seal supply systems.	
Seat locking to EN 12756	
Shrink disk	
Sliding pressure	
Sliding velocity	
Super-Sinus spring	
Surface finish	
Surface roughness	
Symbols	
TTV O-Rings	
Turbulence losses	
Types of drive	
Vapor curves	12

Table of materials and material codes: fold-out page at back cover.

Symbols

Area of sliding face А

- Area hydraulically loaded by medium pressure A_H
- Width of sliding face b
- Specific heat capacity С
- D Outer diameter of sliding face
- d Inner diameter of sliding face
- D_{a} Outer diameter of bellows
- d_H Hydraulic diameter
- Inner diameter of bellows Di
- $\mathbf{d}_{\mathbf{m}}$ Mean diameter of sliding face
- Diameter of shaft D_w
- Coefficient of friction f
- Ff Spring force
- Gap width h
- Н Delivery head of pumping screw
- k Balance ration
- k₁ Pressure gradient factor
- n Speed
- Medium pressure p₁
- Atmosphere pressure p_2
- Buffer fluid pressure p₃
- Δp p₁-p₂; p₃-p₁; p₃-p₂
- Spring pressure p_f
- Sliding pressure p_G
- Calculated load for the frictional force of the p_r secondary seal
- P_{R} Power consumption of sliding faces
- P_{V} Turbulence loss through rotating parts
- Ņ Delivery rate
- Q Mechanical seal leakage rate
- Ra Mean roughness index (calculated)
- Temperature of the medium to be sealed t,T
- Rise in temperature of the medium to be sealed ΔT
- Temperature of the buffer medium t3
- Sliding velocity ٧_g
- Dynamic viscosity η
- Load factor κ
- Density ρ
- Kinematic viscosity ν

Mechanical seals according to EN 12756 (code system)

For single mechanical seals there is a distinction drawn between standard (N) and short (K) types. For double mechanical seals (back-to-back) EN specifies the short type only.

Double seal

* DIN 24960

Code system for agitator seals to DIN

Leakage drain, can be used alternatively as a flush or as a Polyr heating flange. drain

Polymerization barrier, can be used alternatively as a leakage drain or a flush.

Balance ratio

The balance ratio is a non-dimensional factor of the mechanical seal and is defined as

In practice k values are selected between 0.65 and 1.2. With a lower k value, the safety against thermal overload will increase, but the mechanical seal may also lift off more easily.

Unlike an O-Ring seal, the hydraulic diameter of a bellows seal is not a fixed geometric value. It is also influenced by the absolute level of the pressure to be sealed and by the direction of pressurization (internal or external pressure).

Sliding pressure p_G

The term "sliding pressure" is understood to be the surface pressure on the two sealing faces which remains after subtracting all those forces that act on the seal face and which are balanced by hydraulic pressures. The sliding pressure is conditional on the pressure differential to be sealed, the balance ratio, the pressure conditions inside the sealing gap i.e.gap between the seal faces (pressure gradient factor) and the spring pressure. The pressure gradient factor k_1 can assume values between 0 and 1, depending on the geometry of the two sealing faces. For

sealing gap geometries which converge in leakage direction – V-gap for externally pressurized seals – the value of k₁ is > 0.5, while for sealing gap geometries which diverge in leakage direction – A-gap for externally pressurized seals – the value of k₁ < 0.5. For simplified calculations the value of k₁ is generally taken to be 0.5. Under unfavourable conditions the sliding pressure can become negative, causing the sealing faces to open resulting in excessive leakage.

$$\mathbf{p}_{\mathbf{G}} = \Delta \mathbf{p} \cdot (\mathbf{k} - \mathbf{k}_{1}) + \mathbf{p}_{\mathbf{f}}$$

Coefficient of friction f

The coefficient of friction f is conditional on the materials that are in contact, the medium being sealed, the sliding velocity and the design-related conditions of contact between the sliding faces. For general considerations and calculations, a coefficient of friction of between 0.05 and 0.08 can be applied as a good approximation. As can be seen in the graph, a lower value is obtained under improved conditions of lubrication, e.g. due to partial build-up of hydrodynamic pressure in the sealing gap. On the other hand, when a mechanical seal is run under purely hydrodynamic conditions of operation, the coefficient of friction will rise as the speed increases – similar to hydrodynamic bearings.

Gap width h

Seals with contacting faces

In contact seals with a theoretically parallel sealing gap, the distance between the two sealing faces is conditional on the roughness of the surfaces. Numerous measurements taken in the laboratory and in practice with due allowance for external factors indicate that a mean gap width of less than 1 mm can be used as a basis for calculating the normal degree of leakage.

Seals with non-contacting faces

Hydrostatically or hydrodynamically balanced, non-contacting mechanical seals adjust automatically to a defined gap width during operation. The width of the gap depends mainly on the shape of the gap in radial as well as circumferential direction, on the operating conditions and on the medium.

Load factor \varkappa

The balance ratio is just a non-dimensional factor used to assess a mechanical seal. A second one is the load factor \varkappa .

$$\varkappa = \mathbf{k} + \frac{\mathbf{p_f} \pm \mathbf{p_r}}{\Delta \mathbf{p}}$$

The balance ratio and the load factor are practically identical when the pressure differentials to be sealed are large. The friction at the dynamic secondary seals p_r is usually disregarded in the calculation.

Surface roughness

Microfinished sliding faces made of various materials display the following average, arithmetic mean roughness values (R_a):

Tungsten carbide, nickel-bonded: 0,01 μm Silicon carbide (SiC): 0,04 μm Special cast Cr-steel: 0,15 μm Carbon graphite: 0,10 μm Aluminium oxide: 0,15 μm C-SiC-Si/C-SiC: 0,15 μm

The lower the roughness value, the higher the percentage bearing area and hence the higher load capacity of a mechanical seal.

Sliding velocity vg

The sliding velocity is usually quoted in relation to the mean sliding face diameter.

Example: $d_m = 170 \text{ mm}$ $n = 4,500 \text{ min}^{-1}$ $v_q = 40 \text{ m/s}$

Degree of roughness in

bearing

relation to the percentage

Turbulence losses Pv

The turbulence-related consumption of power is not significant until the circumferential speed reaches 30 m/s (98 ft/s). It must be given due consideration particularly with special seals.

Heat transfer

The total power consumption of a mechanical seal has to be dissipated into the medium or the buffer fluid by means of appropriate measures in order to stop the seal from overheating. The necessary fluid flow rate for removal of the power losses is calculated by

 $\dot{\mathbf{V}} = \frac{\mathbf{P}_{\mathbf{R}} + \mathbf{P}_{\mathbf{V}}}{\Delta \mathbf{T} \cdot \mathbf{c} \cdot \boldsymbol{\varrho}}$

Under certain conditions of installation or operation heat may pass from the product to the sealing compartment and will need to be taken into account when calculating the circulation rate.

 $\begin{array}{l} \mbox{Example calculation:} \\ P_{R} &= 420 \ W \ (1 \ W = 1 \ \frac{J}{s}) \\ \Delta T &= 10 \ K \\ \mbox{Fluid: Water;} \\ c &= 4200 \ J \ / \ (kg \cdot K) \\ \ell &= 1 \ kg \ / \ dm^{3} \\ \dot{V} &= \frac{420 \ W \cdot kg \cdot K \cdot dm^{3}}{10 \ K \cdot 4200 \ Ws \cdot 1 \ kg} \\ &= 0.01 \ l/s = 0.6 \ l/min \end{array}$

Cooling water requirements

When estimating the amount of cooling water required by heat exchangers it can be assumed that the temperature of the cooling water will increase by 5 K between the inlet and the outlet. This means that 1 I/min of cooling water dissipates 350 W.

Power consumption P_R of the sliding faces

The power consumption through friction of the sliding faces is calculated by the equation

 $\mathbf{P}_{\mathbf{R}} = (\Delta \mathbf{p} \cdot \mathbf{k} + \mathbf{p}_{\mathbf{f}}) \cdot \mathbf{v}_{\mathbf{q}} \cdot \mathbf{A} \cdot \mathbf{f}$

*Example M7:

 $\Delta p = 5 \text{ bar}$

 $D_w = 100 \text{ mm}$ $n = 1,000 \text{ min}^{-1}$

 $P_{\rm R} = 310 \, {\rm W}$

* unbalanced rotating seal

*Example H7:

- $\Delta p = 20 \text{ bar}$ $D_w = 70 \text{ mm}$ $n = 1,000 \text{ min}^{-1}$
- $P_{\rm R} = 215 \, {\rm W}$

Example M48-D:

 $\Delta p = 14 \text{ bar}$ $D_w = 50 \text{ mm}$ n = 100 min⁻¹

- $P_R = 70 W$

Low-duty agitator seals (PN 16)

Example HS-D:

- $\Delta p = 32 \text{ bar}$ $D_w = 50 \text{ mm}$ $n = 100 \text{ min}^{-1}$

 $P_{\rm R} = 195 \, {\rm W}$ Heavy-duty agitator seals (PN 40)

Power consumption

The total power consumption of a mechanical seal is calculated from

- The power consumed by the sliding faces.
- The power consumption due to turbulence created by the rotating parts.

Balanced stationary seal of the HRC series

Surface technology for sliding faces

Combinations of face materials such as carbon graphite/ SiC and SiC/SiC have proven excellently suitable for use in mechanical seal technology, but permanently problem-free functioning also requires adequate lubrication in the sealing gap or, where gas-lubricated mechanical seals are concerned, contactless operation.

Dry running as result of inadequate lubrication or, in the case of gas seals, contact between the sliding faces during operation, leads to massive temperature increases and possible damage to the sliding faces and secondary seals.

In order to significantly extend the service life and reliability of such seals or enable their use under extreme conditions in the first place, EagleBurgmann offers three special sliding face coatings, namely DiamondFace, Diamond-Like-Carbon (DLC) and Titanium Nitride (DM-TiN). Each of these coatings has its own particular strengths, and which of them is to be used depends on the application for which it is intended.

DiamondFace

The introduction of DiamondFace by EagleBurgmann in 2007 was a milestone in the history of mechanical seal technology. A micro-crystalline layer, which has all the attributes of natural diamond, is applied to the seal faces by means of a chemical vapor deposition (CVD) process in a vacuum reactor at a temperature of 2,000 °C (3,632 °F). Developed in cooperation with the Fraunhofer Institute for Surface Engineering and Thin Films in Braunschweig/Germany, the process produces high coating thicknesses and an extremely even seal face. Coating adhesion exceeds all known requirements in practical application.

Seal faces with DiamondFace coatings are extremely hard and wear-resistant, and exhibit low friction, excellent heat conductivity and extremely high chemical resistance. The technology increases the service life of mechanical seals used in pumps, agitators and compressors many times over. Time between maintenance calls increases considerably, and lifecycle costs are reduced significantly.

DLC (Diamond-Like-Carbon)

This hydrogenated amorphous carbon coating (a-C:H), applied by plasma enhanced chemical vapour deposition (PECVD), features excellent wear protection and friction reduction for silicon carbide seal faces. The high hardness and the specially designed surface offer great protection against scoring. DLC is used as standard coating for silicon carbide seal faces and is only surpassed by the extraordinary properties of the DiamondFace coating. In terms of material properties, the a-C:H DLC coating is to classify between diamond and carbon graphite.

DM-TiN Titanium Nitride

The DM-TiN titanium nitride coating (Standard: 1.4006/ SU410, Japanese patent no. 2134661) is applied by means of an ion beam mixing process, and exhibits outstanding microhardness and excellent adhesive properties due to the fact that it penetrates the metal and forms a tight metallurgical bond.

Titanium nitride coatings are used as start-up protection for metallic seal faces on compressor seals (e.g. MDGS). DM titanium nitride/carbon graphite combinations have a good friction coefficient and exhibit excellent emergency running properties.

Leakage rate Q

Calculated rates of leakage and power losses are not guaranteed values. They are statistical and calculated mean values which are determined on the basis of experience and extensive testing. The leakage rates and power losses which actually arise in a particular seal can be several times higher on account of factors that are impossible to quantify theoretically. As can be seen from formula, the leakage rate is mainly conditional on the actual gap width during operation. This depends in turn on many factors (see also gap width).

Factors influencing leakage

The major factors with an influence on a mechanical seal's leakage rate, correct functioning and reliability include:

- · Machined finish of the sliding faces
- Flatness of the sliding faces and flatness deviations caused by thermal or pressure-induced deformations
- Machine vibrations or stability
- $\boldsymbol{\cdot}$ Mode of operation of the plant
- Characteristics of the medium to be sealed
- · Correct installation of the mechanical seal

Formula for externally pressurized mechanical seals

$$\mathbf{Q} = \frac{\mathbf{h}^3}{\mathbf{\eta} \cdot \ln\left(\frac{\mathbf{D}}{\mathbf{d}}\right)} \left[\mathbf{1,885} \cdot \mathbf{10}^{-4} \cdot \Delta \mathbf{p} - \mathbf{7,752} \cdot \mathbf{10}^{-19} \cdot \mathbf{\varrho} \cdot \mathbf{n}^2 \cdot (\mathbf{D}^2 - \mathbf{d}^2) \right]$$

Example calculation for a H7N/48 seal

Vapor curves

A sealing system for hydrocarbons must often make allowance for partial dry running due to their low boiling points. However with the right design features and face materials, it is possible to guarantee failsafe operation of the mechanical seal. The operating temperature must be at least 5 K lower than the boiling point under operating pressure.

Seat locking^{*)} to EN 12756

* not applicable for seats made of carbon

Extrusion characteristics of elastomeric O-Rings The extrusion resistance of elastomeric O-Rings can be greatly enhanced by the use of support rings.

TTV O-Rings

Double PTFE-encapsulated O-Rings of the type used in EagleBurgmann mechanical seals combine the elasticity of the core materials (synthetic rubber) with the chemical and thermal resistance of the PTFE.

The material PTFE features good chemical and thermal resistance but it also displays a high degree of rigidity, a low coefficient of thermal conductivity, an unfavourable expansion characteristic and a tendency to cold flow. It is advisable therefore to avoid the use of 0-Rings made of solid PTFE.

The assembly position of double PTFE-encapsulated elastomers is critical. Care must be taken to ensure that the joint on the outer jacket faces against the assembly direction, as otherwise there is a risk of the jacket opening and being pulled off. Bending of the jacket must be avoided at all costs to prevent leaks. Slip TTV rings onto tubes for safe storage.

Functional principle gas-lubricated seals

In its basic design and mode of operation, the EagleBurgmann Gas Seal is the same as a conventional mechanical seal except for two differences: a) the sliding faces are wider, and b) they are lubricated by gas rather than liquid.

This is assured in outstanding manner by the sophisticated geometry of V- and U-grooves in the sliding faces. Even at low speeds a stable gas film develops in the sealing gap to separate the sliding faces and guarantee non-contacting, wear-free operation, at a minimum level of power consumption that is 95 % below that of liquid-lubricated seals.

Elaborate buffer fluid oil systems for the lubrication and cooling of double seals are superfluous. Gas pressurization at a level of around 5 to 10 % above product pressure (p_1) makes sure that no process medium can escape to the atmosphere. A small gap height of approximately 3 μ m between the sliding faces results in minimum consumption of buffer gas of a magnitude that depends largely on the pressure, speed and seal diameter.

V-grooves

The V-grooves convey the gas by a rotary movement between the sliding faces. The resulting pressure rise causes the seal faces to lift off and ensures a contact-free operation. V-grooves are **dependent** on the direction of rotation.

U-grooves

For sliding faces featuring U-grooves, the operating principle is similar to that for V-grooves, with one decisive difference: the direction of rotation is **independent.**

Contra-rotating pumping screw.

1 Pumping screw 2 Pumping sleeve

Pumping screw	Pum	ping	screw
---------------	-----	------	-------

Pumping screws are used to boost the circulation of coolant for single and double mechnical seals. The direction of flow, delivery head and delivery rate can be adapted to the given operating conditions by suitable design measures.

Pumping screws are **dependent on the direction of rotation.** An **"F"** in the drawing number stands for a pumping screw. It follows after the type code. The optimum arrangement is afforded by the **contra-rotating pumping screw** where the thread of the stationary screw (pumping sleeve) faces in opposite direction to the rotating thread (pumping screw).

Explanation

The diagram shows a multi-stage centrifugal pump with **clockwise** rotation (looking from the drive side), a **type B** mechanical seal with pumping direction **"from drive"** on the drive side and a **type A** mechanical seal with pumping direction **"towards drive"** on the nondrive side.

Direction of shaft rotation	Pumping direction	Pumping screw type	Coding of components
(looking from drive)			
Right	Towards drive	A	Pumping screw AR
			Pumping sleeve AL
	From drive	В	Pumping screw BL
			Pumping sleeve BR
Left	Towards drive	В	Pumping screw BL
			Pumping sleeve BR
	From drive	A	Pumping screw AR
			Pumping sleeve AL

Pumping capacity of various pumping screws with pumping sleeve

Super-Sinus spring

The Super-Sinus spring permits an almost uniform introduction of forces over the whole range of increased axial movement tolerances of mechanical seals, e.g. M7N/H7N. The one-piece spring is endless and has a very flat characteristic. The Super-Sinus spring has no welding spots to minimize corrosion. It is regularly made of 1.4571, optionally of Hastelloy[®].

Conical spring

When a conical spring is used for driving the seal (e.g. in standard types M2 and M3), the mechanical seal becomes **dependent on the direction of rotation**. Looking toward the sliding face of the rotating parts of the seal, shafts rotating in clockwise direction require right-hand springs and shafts rotating in anticlockwise direction require left-hand springs. Mounting the conical spring is easier if you twist it onto the shaft with a screwing action in the same direction as the spring coiling. This screwing action will cause the spring to open. For brief reversals of the direction of rotation we recommend seal type "S30".

Looking

towards the mechanical seal

Types of drive

For a seal to function properly, the shaft torque must be transmitted uniformly to the shaft sleeve and/or rotating parts under all operating conditions. Depending on the seal design it is necessary to make allowance for centrifugal and axial forces and in some case to observe special installation instructions. Incorrect fitting can cause, for example, jamming and deformation of the seal.

Typical arrangements

Allen set screw with full dog point

Drive key

Conical spring

Spring loaded drive pin

Shrink disk

The pressure necessary for the transmission of torque is generated through clamping force on lubricated conical surfaces.

The shrink disk couplings can be released at any time by slackening the tensioning screws. All the parts involved are subjected to elastic deformation only, so the original clearance is restored once the screws are released. Provided the conical surfaces are undamaged, the shrink disks can be retensioned any number of times (ensure correct lubrication). Shaft sleeves should not have a clearence diameter under the shrink disk and should make full contact with the shaft.

Prior to installation

To fit a seal you will need its installation and operating instructions with the correct drawing. Before starting, check the dimensions, the maximum acceptable deviations and the geometrical tolerances of the machine.

Edges and shoulders

All edges and shoulders onto or into which the mechanical seal is pushed during installation must be chamfered, deburred and rounded off to less than 30° x 2 mm.

Dimensional deviations

Acceptable deviations for dimensions having no tolerance specification:

- · ISO 2768 Part 1, fine/medium for linear and angular dimensions
- Part 2, tolerance class K for general geometrical tolerances

Concentricity tolerance

Shaft in accordance with ISO 5199

In the area of the mechanical seal the shaft concentricity tolerance must not exceed 50 μ m for diameters <50 mm, 50 μ m, 80 μ m for diameters between 50 and 100 μ m, and 110 μ m for diameters > 100 mm.

Seal chamber bore

For sliding velocities of $v_g < 25$ m/s the concentricity tolerance of the seal chamber in relation to the shaft should not exceed 0.2 mm, and when pumping screws are used it should not exceed 0.1 mm due to the effect of the pumping characteristic. If these values are exceeded please contact EagleBurgmann.

Axial run-out

Mounting face

Axial run-out depends on the speed. Permissible values are indicated by the graph.

Surface finish

Finished surfaces according to EN 12756

Mean roughness index	R _a for seconda	ry seal material
	b	w
Elastomers	2.5 µm	0.8 µm
Non-elastomers or optional use of elastomers and non-elastomers	1.6 µm	0.2 µm

Mechanical seal installation

Absolute cleanliness and care are essential when fitting mechanical seals. Dirt and damage to sliding faces and O-Rings jeopardize a seal's function. Any protective covering on the sliding faces must be removed without trace. Never put lubricant on the sliding faces – mount only in a completely dry, dustfree and clean state. The accompanying installation instructions and the notes on the assembly drawings must be observed exactly.

Fitting advice

To reduce the friction an O-Rings when mounting seals on a shaft or when inserting seal cartridges in their housing, apply a thin coating of silicon grease or oil to the shaft or housing (N. B.: this does not apply to elastomer bellows seals). Never allow EP rubber O-Rings to come into contact with mineral oil or grease. When inserting stationary seats, be careful to apply even pressure and use only water or alcohol to reduce O-Ring friction.

Series MG

Use normal or soapy water (with a surfactant) to mount elastomer bellows seals of the MG series on the shaft. Wet the seal seat and the shaft thoroughly and keep wet if the distance to slide the seal is rather long. Never use oil or grease! After completing the assembly, check that the rings, springs and seal face sit correctly and tight.

Series MFL

Never over-compress metal bellows seals. Apply the axial mounting force needed to push the seal onto the shaft via the bellows drive collar.

Points to note when using Statotherm $^{(\!R\!)}$ moulded rings (e. g. MFLWT80):

- Install moulded rings (Item 1 and 2) in the dry state only and compress in axial direction only (radial deformation would result in their destruction).
- Apply even pressure to insert the moulded ring (Item 2) and the stationary seat (Item 3) in the recess (concentricity tolerance!).
- Tighten the screws (Item 4) in the rotating part gradually and in circular succession (not cross-wise) in several steps, keeping the gap as even as possible.

Venting

To prevent damage to the sliding faces from dry running, the buffer space must be carefully vented **after you have installed the seal.** This is particularly important for those types of buffer/barrier fluid systems that do not vent themselves or are partially self venting (double seal with buffer/barrier fluid systems).

Screw locking

If no special provision is made for locking screw thread, use set screw with a suitable adhesive (e.g. Loctite $^{\textcircled{B}})$ after removing any grease.

Seal supply systems

Circulation

For single seals it is generally advisable to install a circulation pipe from the discharge nozzle of the pump to the seal chamber. A pipe size G 1/4 is normally sufficient. There should be a close fitting neck bush between the pump casing and the seal chamber.

Flushing

Flushing systems are installed in accordance with ISO 5199, Appendix E, Plan No. 08a or API 682, Appendix D, Plan 32. A clean and mostly cold external medium is injected into the stuffing box in the area of the sliding faces via on orifice (throttle) into the medium to be sealed. Flushing is used either to lower the temperature or to prevent deposits forming in the area of the mechanical seal. Again it is recommanded that a close fitting neck bush is employed.

Quench

Quench is the term commonly used in sealing engineering for an arrangement that applies a pressureless external medium (fluid, vapour, gas) to a mechanical seal's faces on the atmosphere side. A quench is used on the one hand when a single mechanical seal does not function at all or only within certain limits without auxiliary measures or when a double mechanical seal with pressurized barrier medium is unnecessary. When an integral stationary seat stop is fitted, the quench pressure should not exceed 1 bar. A quench performs at least one of the duties described below.

Fluid quench

- Absorption or removal of leakage by the quench medium
- Monitoring of the mechanical seal's leakage rate by periodic measurement of the level of the quench medium in the circulation vessel or thermosyphon vessel
- · Lubrication and cooling of the standby mechanical seal
- Exclusion of air: For media which react with atmospheric oxygen the queching medium stops the leakage making contact with the atmosphere
- Protection against dry running: For applications subject to brief, periods of vacuum and operation of pumps without pumping liquid (submersible pumps) the quenching medium prevents dry running of the mechanical seal
- Stabilization of the lubrication film: For operation under vacuum and/or sealing pressures close to the vapour pressure, the quenching medium stabilizes the lubrication film
- Cooling or heating of the outboar side of the mechanical seal.

Steam quench

- Heating: For media with a high melting point the vapour quench prevents the leakage from solidifying in that area of the mechanical seal critical for its proper functioning
- Exclusion of air
- •Removal of leakage

Gas quench

- lcing protection: With operating temperatures <0 °C (cryogenic mechanical seals), the injection of nitrogen or dry air into the seal housing prevents the mechanical seal parts on the atmosphere side from icing up
- Exclusion of air
- · Removal of leakage

Sealing the quench medium

- Outboard mini-gland the preferred choice for steam, not so much for liquids
- Lip seals the preferred choice for oils and water
 Mechanical seals the preferred choice for all
- circulating quench fluids

Barrier system

To guarantee the correct working of double mechanical seals, the barrier interspace (between the product side and the atmosphere side of the mechanical seal) must be completely filled with clean barrier medium. Before starting up double mechanical seals it is vital, therefore, to ensure a sufficient rate of circulation of the barrier fluid. The barrier fluid pressure should lie 10 % or at least 2...3 bar above the maximum pressure to be sealed. The flow rate must be controlled to ensure that the temperature of the barrier medium at the outlet lies below approximately 60 °C and that it does not exceed boiling point under any circumstances. The maximum acceptable inlet/outlet temperature differential is 15 K. The barrier fluid outlet lies at the highest point of the stuffing box for automatic venting of any vapour. In view of the basic conditions of operation, a barrier

system must perform the following functions:

- · Build-up pressure in the barrier inter space
- Compensation of leakage
- Circulation of the barrier medium
- Cooling of the barrier medium
- · Cooling of the seal

Barrier fluid systems for liquid-lubricated mechanical seals break down into two basic categories:

- **Open circuit** A circuit in which both the circulation and the pressurization take place through a single barrier fluid system (e.g. SPA). After each circuit the barrier fluid is relieved and collected in a pressureless tank.
- Closed circuit In this type of circuit all the components are kept under the same pressure. Pressure is applied by means of nitrogen (TS system) or the process medium pressure (DRU system), or via a refill system (SPN). Pressure loss in the circuit must be taken into account when drawing up the design.

Pressure vessel regulations

Requirements imposed by the German Pressure Vessel Code on Group III pressure vessels (Section 8)

- Section 4 of the German Pressure Vessel Code orders that pressure vessels be built and operated in accordance with the generally valid rules of engineering (such as the German AD Code).
- AD Bulletin W2 requires every pressure- bearing part made of austenitic steel to be accompanied by a material certificate EN 10204 3.1 B or 3.1 C.
- The manufacturer must subject every pressure vessel to a pressure test.
- Every pressure vessel must be issued with a certificate confirming its correct production and pressure testing in accordance with the Pressure Vessel Code. This certificate is included with the delivery.

Barrier medium

The barrier medium fulfills two functions – it dissipates the heat generated by the seal and it prevents the product from penetrating the sealing gap to any appreciable degree. Any liquid and any gas can be chosen as barrier medium, with due consideration to the corrosion resistance of the parts it comes into contact with and to its compatibility with the process medium and surroundings. The barrier medium must not contain any solids. It is particularly important that liquid barrier media do not tend to precipitate and that they have a high boiling point, a high specific thermal capacity and good thermal conductivity. Clean, demineralised water satisfies these requirements to a high degree.

Hydraulic oil is often used in buffer fluid units and water in closed barrier fluid circuits. To prevent damage to the TS and sealing system, due allowance must be made for the coefficients of volumetric expansion of the barrier fluids used.

Gas solubility in typical barrier media

Piping plans in accordance with API 682 4th edition

Process side

Integral (internal) recirculation from the pump discharge to Recirculation from the pump discharge through a strainer the seal chamber.

Dead-ended seal chamber with no recirculation of flushed fluid. Flush connections plugged.

Circulation between the seal chamber and the pump created by the design of the seal chamber. Flush connections plugged.

Recirculation from the pump discharge through a flow control orifice into the seal chamber.

Injection of clean fluid into the seal chamber from an external source.

and a flow control orifice into the seal chamber.

Recirculation from the seal chamber through a flow control orifice and back to the pump suction or pump suction piping.

Recirculation from pump discharge through a flow control orifice to the seal and simultaneously from the seal chamber through a flow control orifice to pump suction.

Recirculation from pump discharge through a flow control orifice and cooler into the seal chamber.

Recirculation from pump discharge through a strainer, a flow control orifice and a cooler into the seal chamber.

Recirculation from a circulation device in the seal chamber through a cooler and back into the seal chamber.

Recirculation from the pump discharge through a cyclone separator delivering the clean fluid to the seal chamber. The solids are delivered to the pump suction line.

Recirculation from the pump discharge through a cyclone separator delivering the clean fluid to a cooler and then to the seal chamber. The solids are delivered to the pump suction line.

- Instrument symbols (FO) Flow orifice
 - (\mathbf{u}) Level indicator
 - (ПТ) Level transmitter with local indicator
 - (PDIT) Differential pressure transmitter with local indicator
 - (PI) Pressure indicator
 - (PIT) Pressure transmitter with local indicator

(1)	Temperature indicator
(\mathbf{III})	Temperature transmitter with local indicator
HLA	High level alarm set point
LLA	Low level alarm set point
NLL	Normal liquid level
FI	Flow indicator
FIT	Flow transmitter with local indicator

Between seals

Reservoir providing buffer liquid for the outer seal of an arrangement 2 unpressurized dual seal. The buffer liquid shall be maintained at a pressure less than seal chamber pressure and less than 2.8 bar (40 PSI).

Unpressurized external buffer fluid system supplying clean buffer liquid for the outer seal of an arrangement 2 unpressurized dual seal. Buffer liquid is circulated by an external pump or pressure system.

Pressurized barrier fluid reservoir supplying clean fluid for an arrangement 3 pressurized dual seal.

Barrier fluid system pressurized by a bladder accumulator supplying clean liquid for an arrangement 3 pressurized dual seal.

Barrier fluid system pressurized by a piston accumulator supplying clean liquid for an arrangement 3 pressurized dual seal. The barrier pressure is generated from the seal chamber pressure. The system is self-energizing and reacts to fluctuations in the seal chamber fluid pressure.

Pressurized external barrier fluid system supplying clean liquid for an arrangement 3 pressurized dual seal. The barrier liquid is maintained at a pressure greater than seal chamber pressure and is circulated by an external pump or pressure system.

Externally supplied buffer gas for arrangement 2 unpressurized seals with a dry running containment seal (2CW-CS and 2NC-CS). Buffer gas is maintained at a pressure less than seal chamber pressure. The buffer gas pressure should not exceed 0.7 bar (10 PSI).

Tapped connections for the purchaser's use e. g., for future use of buffer gas.

Externally supplied barrier gas for arrangement 3 dual pressurized non-contacting gas seals (3NC-FB, 3NC-BB, 3NC-FF).

A containment seal chamber leakage collection system for condensing or mixed phase leakage on arrangement 2 unpressurized seals with containment seals (2CW-CS and 2NC-CS).

A containment seal chamber drain for non-condensing leakage on arrangement 2 unpressurized seals with containment seals (2CW-CS and 2NC-CS). Used if the pumped fluid does not condense at ambient temperatures.

l	Equip	ment symbols		
	Ø	Bladder accumulator	->>-	Valve, normally open
	Ţ	Cyclone separator	-▶◀-	Valve, normally closed
		Filter, coalescing	⊣≁⊢	Valve, check
	$\exists \ \cdot$	Flow orifice		Valve, needle
	Þ,	Seal cooler		Valve, pressure control
-	-2-	Strainer, Y		Valve, pressure relief

Atmospheric side

Reservoir providing a dead-ended blanket for fluid to the quench connection of the gland plate. Only recommended for vertical pumps.

Quench stream from an external source to the atmospheric side of the seal faces. The quench stream can be low pressure steam, nitrogen or clean water.

Tapped and plugged atmospheric-side connections for purchaser's use.

Atmospheric leakage collection and alarm system for condensing leakage. Failure of the seal will be detected by an excessive flow rate into the leakage collection system.

Atmospheric leakage collection and detection system for condensing leakage. Failure of the seal will be detected by a cumulative leakage into the system.

Throttle bushings in the seal gland minimize the seal leakage leaving the seal gland and allow for detection of a seal failure by an alarm of the monitoring pressure transmitter.

Engineered piping plan not defined by other existing plans.

An orifice plug in the drain port minimizes the seal leakage leaving the seal gland and allows for detection of a seal failure by an alarm of the monitoring pressure transmitter.

Seal coding system according to API 682 4^{th} edition

	Mechanical sea	al		Design options		Size		Plan	S	
Category	Arrangement	Туре	Containment device	Secondary seal material	Face material	Shaft size	P	Piping	plan	
1 2 3	1 2 3	A B C Dual seal with different seal types in the inner and outer position: Inner type / Outer type e.g. C/B	 P: Plain gland for Arrangement 2 and 3 L: Floating throttle bushing for Arrangement 1, Category 1, 2, 3 F: Fixed throttle bushing for Arrangement 1, Category 1 C: Containment seal for 2CW-CS, 2NC-CS S: Floating, segmented carbon bushing X: Specified separately 	F: FKM G: PTFE H Nitrile I: FFKM R: Flexible graphite X: Unspecified Dual seal with different secondary seal materials at the inner and outer position: Inner material/Outer material e. g. I/F	M:Carbon/Nickel bounded tungsten N: Carbon/RBSiC O: RBSiC/Nickel bounded tungsten P: RBSiC/RBSiC Q: SSiC/RSSiC R: Carbon/SSiC S: Graphite loaded RBSiC/RBSiC T: Graphite loaded RBSiC/RBSiC T: Graphite loaded SSiC/SSiC X: Unspecified Dual seal with different face materials at the inner and outer position: Inner material/Outer material e. g. P/N	Three digits, rounded up to the next whole millimeter Examples: 25.00 mm: 025 25.25 mm: 026 25.90 mm: 026 XXX: Unspecified	order, a forv 01 02 03 11 12 13 14 21	d in num separa vard sla 534 6 538 6 536 6 54 6 55 71 72 74 75 76	ted by sh 61 62 55 55 64	/

Example

	ľ	Mechanical sea	I		Design options		Size	Plans
Cate	egory	Arrangement	Туре	Containment device	Secondary seal material	Face material	Shaft size	Piping plan
:	2	2	A	X: Specified separately	I: FFKM (Inner position) F: FKM (Outer position)	N: Carbon /RBSiC	080	11/52/62

Seal designation: 22A-XI/FN-080-11/52/62

The recommendations in the media tables are based on the "typical case" of a seal for a horizontal centrifugal pump. Other types of machine, installation conditions, modes of operation, designer's, manufacturer's and operator's specifications, local regulations and so on can result in a different choice of mechanical seal.

For complex sealing duties it is always advisable for the user to consult with our specialist engineers.

24

27

Short legend: Fold-out page at back cover

Ē

The recommendations in the media tables are based on the "typical case" of a seal for a horizontal centrifugal pump. Other types of machine, installation conditions, modes of operation, designer's, manufacturer's and operator's specifications, local regulations and so on can result in a different choice of mechanical seal. For complex sealing duties it is always advisable for the user to consult with our specialist engineer. Explanations to columns 1 to 16:

Column 1: Media designation

Designations of materials to be sealed comply as far as possible with IUPAC rules (IUPAC = International Union of Pure and Applied Chemistry). Where a material has several commonly used designations and common names, it is listed in accordance with IUPAC rules with cross-referencing of its other names. Designations are listed in alphabetical order.

Column 2: Notes on the media

- G = mixture/group (compound) The media is a mixture of various isomers of one substance or it is a group of substances having close chemical ties.
- = natural product Ν The medium is a natural product or the refined form of a natural product with changing proportions of its various constituents.
- (R) = trade mark The constituents of the media or their proportions in the medium are unknown or are not known exactly.
- = collective term S The generalized mechanical seal recommendation is no more than a pointer to a suitable mechanical seal.
- TA-Luft relevant medium. TA The requirements of the TA-Luft air quality control directive have to be considered.
- V impurities =
 - The medium contains large quantities of impurities due to the peculiarities of the process.

Column 3: Concentration

- = The media normally occurs in pure form and (as in the case of gases and other media requiring a double mechanical seal) - the concentration has no bearing on the mechanical seal selection.
- < 10 = concentration less than 10 % by weight.
- = The designation in column 1 is the common ~ 10 name for approximately 10 % aqueous solution.
- A solids content of up 10 % by weight. F10 =
- = Solution of defined composition L
- < L = Unsaturated solution
- = Supersaturated solution > L
- Sch = Melt
- Sus = Suspension of defined composition

Column 4: Temperature

- < 100 = less than 100 °C
- = minimum of 10 °C above solidifying < F temperature
- = minimum of 10 °C above crystallization > K temperature

For aqueous solutions: Up to approximately 10 < Kp = °C

below boiling point at atmospheric pressure. For gases: 20 °C below boiling point of the liquefied gas; at the same time, the sealing pressure must be a minimum 3 bar higher than the vapor pressure. For other media: Up to approx. 20 °C below boiling point at 1 bar

- (but no higher than 400 °C)
- > Pp = minimum 10 °C above pour point
- Up to the operating temperature limit of the TG = mechanical seal's materials in contact with the product.

Column 5: Arrangement of shaft seal

Designation in accordance with ISO 5199. Appendix E: explanations are modified in parts.

Single mechanical seal arrangement

- = Single mechanical seal These seals can be unbalanced, balanced, with or without circulation or flushing of seal faces, with or without throttle bushing.
- = Double mechanical seal Either one of the seals can be unbalanced or balanced on its own, or both together.
- Quench arrangement for single and double = mechanical seals. Liquids are sealed by lip seal, gaseous media by.

Column 6: Auxiliary piping plans

Basic arrangements and alternatives see API 682/ISO 21049.

Column 7: Additional measures

= Steam quench

S

D

Q

D

kD

SS

2

3

4

5

6

Х

- (H), H = Heating (where necessary) of the seal housing, seal cover, buffer medium
 - = Conical stuffing box
- = Splash guard necessary. Leakage pipe-away recommended. SW
 - = Regular replacement of buffer medium necessary. Alternative is a constant through flow of buffer
- medium. QW Regular replacement of quench medium = necessary. An alternative is a constant through flow of
 - quench medium; approximately 0.25 l/min is recommended. = Thermal buffer
- ThE

Column 8: Mechanical seal type

In the case of double or tandem mechanical seals, the recommendation applies to the mechanical seal inboard. The choice of the outboard seal is dictated by the buffer/ -quench medium. 1

- = Mechanical seal having O-Ring secondary seals; unbalanced or balanced; rotating spring in contact with the product, e.g. M3N, M7N, H7N
- = Mechanical seal having O-Ring secondary seals; unbalanced or balanced; rotating springs not in contact with the product, e. g. HJ ...
- = Mechanical seal having O-Ring secondary seals; unbalanced or balanced; stationary springs not in contact with the product, e.g. HR ...
- = Same as 3 but no metal parts in the product: e.g. HR31/d_H - G9
- Mechanical seal with elastomer bellows; = bellows as, MG ...
- = Mechanical seal with metal bellows; such as, MFL
- = Special design e.g. a modified MR-D

Column 9: Materials of construction

for inboard mechanical seals. For an explanation of the material codes and their indices, consult the material key.

Double mechanical seal arrangement

Column 10: Hazard warnings and reasons for recommending a double mechanical seal or quench.

When compiling these seal selections and material recommendations, it was generally assumed that the machine in question is located in a sheltered building frequented occasionally or continually by persons coming into contact with liquid or vapor leakage of medium from all types of sealing points. As such, considerations of health and environmental protection had a strong bearing on the choice of seal category.

"Health hazard" and "Ignition/Explosion" can lose much of their significance if the machine is installed in the open or in areas rarely frequented by people and ringed with warning signs. If no mention is made to either of the reasons 1 to 5 for recommending a double mechanical seal or a single mechanical seal with quench, it is acceptable to use a single mechanical seal. The decision in favor of a single mechanical seal must be taken by the user of the machine or the contractor. As he is the only one to know all conditions and regulations relating to the process and to assess the risks.

Letters in column 10: Health hazard warnings T = Toxic

Media which in low quantities cause death or acute or chronic damage to health when

inhaled, swallowed or absorbed via the skin.

T+ = Very toxic

Media which in very low quantities cause death or acute or chronic damage to health when inhaled, swallowed or absorbed via the skin.

Xn = Harmful

Media which may cause death or acute or chronic damage to health when inhaled, swallowed or absorbed via the skin.

Xi = Irritant

Non-corrosive media which, through immediate, prolonged or repeated contact with the skin or mucous membrane, may cause inflammation.

C = Corrosive

Media which may, on contact with living tissues, destroy them

Carcinogenic:

Substances and preparations which, if they are inhaled or ingested or if they penetrate the skin, may induce cancer or increase its incidence.

Mutagenic:

Substances and preparations which, if they are inhaled or ingested or if they penetrate the skin, may induce heritable genetic defects or increase their incidence. Labeling of media with carcinogenic or mutagenic effect:

R 40: Limited evidence of a carcinogenic effect

- R 45: May cause cancer
- R 46: May cause heritable genetic damage
- R 49: May cause cancer by inhalation

Toxic for reproduction:

Substances and preparations which, if they are inhaled or ingested or if they penetrate the skin, may produce, or increase the incidence of, non-heritable adverse effects in the progeny and/or an impairment of male or female reproductive functions or capacity. Labeling of media with a toxic effect for reproduction:

R 60: May impair fertility

R 62: Possible risk of impaired fertility

R 63: Possible risk of harm to the unborn child

Technical grounds and environmental protection = Vapor pressure/gas 1

At normal working temperatures, the medium has a vapor pressure of > 1 bar. If the working temperature lies below boiling point (column 15) or if the sealing pressure lies clearly above the vapor pressure, a single mechanical seal may be used with consideration of the duty details.

2 = Corrosion

The medium attacks all standard metals. Mechanical seals with no metal parts on product side must therefore be used.

3 = **Exclusion of air**

If the medium contacts or mixes with the atmosphere, it forms an explosive or reacts with a damaging effect on the environment, the medium itself and the machine and mechanical seal.

= Lubricating properties

Under normal conditions, the medium has such poor lubricity that a single mechanical seal is at risk from dry running.

= lcing

4

5

Normally the medium is conveyed at temperature below 0 °C. Without auxiliary equipment, the proper functioning of a single mechanical seal is at risk from freezing atmospheric moisture.

6 = Leakage

Absorbed and/or flushed away by the quench, or prevented by a double mechanical seal necessary.

 $\mathbf{F} = \text{Highly flammable}$

* Media which may become hot and finally catch fire in contact with air at ambient temperature without any application of energy, or solid media which may readily catch fire after brief contact with a source of ignition and which continue to burn or to be consumed after removal of the source of ignition, or liquid media having a very low flash-point, or media which, in contact with water or damp air, evolve extremely flammable gases in dangerous quantities.

F+ = Extremely flammable

Liquid media having an extremely low flash-point and a low boiling-point and gaseous media which are flammable in contact with air at ambient temperature and pressure

₫ Media which give rise to a highly exothermic reaction in contact with other substances, particularly flammable substances.

Solid, liquid, pasty or gelatinous media which may also react exothermically without atmospheric oxygen thereby quickly evolving gases, and which, under defined test conditions, detonate, quickly deflagrate or upon heating explode when partially confined

N = Dangerous for the environment Media which, when they enter the environment, would or could present an immediate or

delayed danger for one or more components of the environment. (The hazard symbols are according to the EU directive 67/548/EEC, "Classification, packaging and labeling of dangerous substances" of June 1967, status April 2004)

$\mathbf{U} =$ Insufficient information

The medium designation is imprecise or the available information on the medium is insufficient to assess the serviceability of a single mechanical seal.

Column 11: TLV

The values quoted in ml/m³ = ppm (parts per million) are taken from Bulletin 30 published by the Senate Commission for Testing Hazardous Materials: "Threshold Limit Values and Biological Material Tolerances".

Additional symbols:

mg: TLVs are quoted in mg/m³ instead of ppm #, e.g. # 0.5 for barium ...: 0.5 mg/m³, calculated as Ba

* "According to the current level of knowledge, the action of this substance constitutes a distinct carcinogenic hazard for humans. No concentration values are given for this substance in the list because it is still impossible to quote any concentration as being safe. With some of these substances, there is even a great risk from absorption through healthy skin. If the use of such substances is unavoidable for technical reasons, special safety and monitoring measures must be taken."

The seal selection takes account of the TLV as follows:

- TLV <5 ppm or*: Use of a double mechanical seal is generally recommended, but see paragraphs 2 + 3 of the introductory note on column 10.
- TLV ≥5, ≤ 25 ppm: A double mechanical seal or a single mechanical seal with quench is recommended. If column 10 contains no further grounds other than "health hazard" for choosing a tandem or double mechanical seal, a single mechanical seal can be used, provided other measures rule out all risks to humans.

Column 12: Normal condition

of the pure medium at 20 °C and 1.013 bar:

- **ga** = gaseous
- fe = solid; no further details available
- **fl** = liquid
- **kr** = crystalline
- pa = viscous

This column contains the following notes on aspects of sealing:

ga requires a double mechanical seal in most cases. If the pressure to be sealed lies distinctly above the vapor pressure at working temperature, a single mechanical seal with or without quench can be used under certain circumstances.

fl indicates the use of single mechanical seal, but other influencing factors such as the working temperature (vapor pressure at pumping temperature, health hazard, risk of explosion or corrosion can necessitate a tandem or double mechanical seal.

fe, kr indicates that the medium must be molten (e. g. sulphur, DMT), dissolved (e. g. salts) or suspended (e. g. limestone or gypsum in water), otherwise it cannot be pumped or stirred.

Column 13: Melting point

(= Fusion point F) in °C If there are unequal values for the solidifying point (setting temperature) and the melting point (liquefying temperature), or different values or modifications, the higher value is always quoted. For some mixtures of media, solidification ranges or pour points are quoted. With fusion points above room temperature and/or working temperatures close to fusion point, it is necessary to check (with due consideration of the other operating conditions such as intermittent mode, full stand-by pump) whether the machine or at least the seal housing requires heating.

Additional signs:

K ...: Crystallization at temperatures below ... °C S ...: Sublimation at ... °C

If there is an additional %-figure, the quoted temperature applies to the ... % aqueous solution.

Column 14: Boiling point

Boiling point of the medium in °C under normal pressure (1.013 bar). Different reference pressures are marked. If the working temperature is close to or above boiling point, the seal selection and material recommendation must be checked.

Additional signs:

A ...: The azeotrope boils at ... $^{\circ}C$ Z ...: Decomposition at ... $^{\circ}C$

(...): Reference pressure in mbar If there is an additional %-figure, the quoted temperature applies to the ... % aqueous solution.

Column 15: Density

For media that are liquid or solid under normal conditions, the density is quoted – where known – in g/cm³ at 20 °C. Different reference temperatures are indicated. For gases there is only an indication whether they are heavier than air (+) or lighter than air (–). This is also a pointer to their behavior in the event of leakage: sinking, rising or self-dissolving.

Additional signs:

(...): Reference temperature in °C

A ...: The quote density applies to the azeotrope at \ldots % weight. ...

%: Density of ... % aqueous solution

Media		-	-			-	-	Mech	anical	Seal	-	-	-	Addit	ional ir	nforma	tion on the me	dium	
Code of materials and	Chemical	ark	%	Temp.	Arrange-	ing				Ма	aterials			Hazard warnings	TLV-	i –	Melting	Boiling	Density
legend see inside of back cover.	formula	Remark	Concentration %	°C	ment	Auxil. piping	Addit. measures	Seal type		E	N 1275	i6			value	condition	temperature °C	point °C	g/cm ³
Please observe the note on page 1.			Icent			Aux	dit. n		1	2	3	4	5	-		Normal o			
the note on page 1.			Cor				Ad		e,	e,	_	_				Nor			
									Seal face	Seal face	Sec. seal	Spring	Others						
1		2	3	4	5	6	7	8	Se	Se	Se	s		10	11	12	13	14	15
							-												
A		TA	-	100	D	504		4	0 (0)	В	м	G	G	Va E + D40.1.0	E0	-FI	-124	21	0,78
Acetaldehyde (Ethanal) Acetates \rightarrow Acetic acid esters	CH ₃ CHOH	IA	-	100	U	53A		1	Q ₁ (S)	в	M ₂	G	G	Xn,F+,R40,1,3	50	fl	-124	21	U,70
Acetic acid:	CH ₃ COOH	TA	-	<Кр	S,Q	62	QW	1	$Q_1(V)$	В	M ₂	М	M	C C	10	fl			
Acetic essence	СН ₃ СООН СН ₃ СООН	TA TA	~25 <90	<kp 25</kp 	S S,Q	11 62	QW	1	$Q_1(V)$ $Q_1(V)$	B B	M ₂ E	G G	G G	C	10 10	fl fl			
Glacial acetic acid Vinegar	СН ₃ СООН СН ₃ СООН	TA TA	>96 ~10	<80 <60	S,Q S	62 11	QW	1	$Q_1(V)$ $Q_1(S)$	B B	M ₂ E	G G	G	C Xi	10 10	fl fl	17	~118	1,05
Acetic anhydride	C ₄ H ₆ O ₃	TA	-	<100	S,Q	62	QW	1	$Q_1(V)$	В	M ₂	G	G	Xn,C	5	fl	-73	139	1,08
Acetic acid esters: Acetic acid benzyl ester									- (0)	_									
Acetic acid butyl esters: Butyl acetate	C ₉ H ₁₀ O ₂		-	<80	S	11		1	Q ₁ (S)	В	M ₂	G	G	Xi		fl	-51	213	1,057
sec. Butyl acetate	$C_6H_{12}O_2 \\ C_6H_{12}O_2$	TA	-	<80 <40	S,Q S,Q	62 62		1	$Q_1(S)$ $Q_1(S)$	B B	M ₂ M ₂	G G	G	F	200 200	fl fl	-77 -99	126 112	0,882 0,865
tert. Butyl acetate Isobutyl acetate	C ₆ H ₁₂ O ₂	TA	-	<40	S,Q	62		1	$Q_1(S)$	В	M ₂	G	G	F	200	fl		98	0,859
Acetic acid cinnamyl ester Acetic acid cyclohexyl ester	$C_6H_{12}O_2 \\ C_{11}H_{12}O_2$	TA	-	<40 <80	S,Q S	62 11		1	$Q_1(S)$ $Q_1(S)$	B B	M ₂ M ₂	G G	G G	F	200	fl fl	-99	118 262	0,87 1,057
Acetic acid ethyl ester	C ₈ H ₁₄ O ₂ CH ₃ COOC ₂ H ₅	TA	-	<80 <60	S S,Q	11 62		1	$Q_1(S)$ $Q_1(S)$	B B	M ₂ M ₂	G G	G G	Xi,F	400	fl fl	-83 -83	173 77	0,969 0,90
Acetic acid hexyl ester Acetic acid isopropenyl	CH3COOC6H13		-	<80	S	11		1	$Q_1(S)$	B B	M ₂	G	G	F	50	fl	-81	171	0,878
ester Acetic acid methyl ester	C ₅ H ₈ O ₂ C ₃ H ₆ O ₂	TA TA	-	<60 <40	S,Q	11 62		1	$Q_1(S)$ $Q_1(S)$	B	M ₂ M ₂	G G	G G	г Xi,F	200	fl fl	-93 -98	97 58	0,92 0,928
Acetic acid pentyl esters																			
(Pentyl-, Amyl acetate): 1-Pentyl acetate	C ₇ H ₁₄ O ₂		-	<80	S	11		1	$Q_1(S)$	B B	M ₂	G	G			fl	-71	150	0,8756
2-Pentyl acetate 3-Pentyl acetate	C ₇ H ₁₄ O ₂ C ₇ H ₁₄ O ₂		-	<80 <80	S S	11 11		1	Q ₁ (S) Q ₁ (S)	В	M ₂ M ₂	G G	G G			fl fl	-79	134 ~135	0,864 0,8712
2-Methylbutyl acetate	$C_7 H_{14} O_2 \\ C_7 H_{14} O_2$		-	<80 <80	S S	11		1	$Q_1(S)$ $Q_1(S)$	B B	M ₂ M ₂	G G	G G			fl fl	-78	138 142	0,8740 0,8670
3-Methylbutyl acetate Acetic acid propyl esters:		TA	_	<80	S,Q	62			Q ₁ (S)	В	-	G	G	F,Xi	200	fl	-73	90	0,872
lsopropyl acetate Propyl acetate	$C_5H_{10}O_2$ $C_5H_{10}O_2$	TA	-	<80	S,Q	62		1	$Q_1(S)$	В	M ₂ M ₂	G	G	F,Xi	200	fl	-95	102	0,887
Acetic acid vinyl ester	C ₄ H ₆ O ₂	TA	-	<60	S,Q	62		1	Q ₁ (S)	В	M ₂	G	G	F	10	fl	-100	73	0,932
Acetone	(CH ₃) ₂ CO (CH ₃) ₂ CO	TA TA	-	30 TG	S,Q D	62 53A		1	$Q_1(S)$ $Q_1(S)$	B A	E M ₂	G G	G	Xi,F,4 Xi,F,1,4	1000	fl	-95	56	0,791
Acetone cyanohydrin (ACH)	C ₄ H ₇ NO	TA	-	TG	D	53A		1	$Q_1(S)$	В	M ₂	G	G	T+,N		fl	-20	95(Z)	0,932
Acetyl acetone Acetyl chloride	CH ₃ COCH ₂ COCH ₃ CH ₃ COCI	TA	-	< Kp TG	S D	11 53A		1	$Q_1(S)$ $Q_1(V)$	B	M ₂ M ₁	G G	G G	Xn C,F,2,3		fl fl	-21 -112	140 51	0,975 1,104
Acetylene	C ₂ H ₂	TA	-	TG	D	53A		1	$Q_1(V)$	B	M ₁	G	G	F+,1		ga	-84	-81	(-)
Acetylene chlorides \rightarrow Di-, \rightarrow Trichloroethylene,																			
→ Tetrachloroethane																			
ACH \rightarrow Acetone cyanohydrin Acidic tar			-	>F<200	D	53A	(H)	1	$Q_1(V)$	В	M ₁	G	G	U		fl			
Acrylic acid	C3H402	TA	-	<kp< td=""><td>S,Q</td><td>62</td><td>(11)</td><td>1</td><td>$Q_1(V)$</td><td>B</td><td>M₂</td><td>G</td><td>G</td><td>C,N</td><td></td><td>fl</td><td>13</td><td>141</td><td>1,051</td></kp<>	S,Q	62	(11)	1	$Q_1(V)$	B	M ₂	G	G	C,N		fl	13	141	1,051
Acrylic esters: Acrylic acid ethyl ester																			
(Ethyl acrylate)	$CH_2CHCO_2C_2H_5$	TA	-	<kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>Xn,Xi,F</td><td>5</td><td>fl</td><td>-71</td><td>99</td><td>0,924</td></kp<>	S,Q	62		1	$Q_1(S)$	В	M ₂	G	G	Xn,Xi,F	5	fl	-71	99	0,924
Acrylic acid methyl ester (Methyl acrylate)	CH ₂ CHCO ₂ CH ₃	TA	-	<kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>Q₁(S)</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>Xn,Xi,F</td><td>5</td><td>fl</td><td>-76,5</td><td>80</td><td>0,956</td></kp<>	S,Q	62		1	Q ₁ (S)	В	M ₂	G	G	Xn,Xi,F	5	fl	-76,5	80	0,956
Acrylonitrile	C ₃ H ₃ N	TA	-	TG	D	53A		1	$Q_1(V)$	В	M ₁	G	G	T,F,N,R45	*	fl	-82	77	0,806
Adipic acid	C ₆ H ₁₀ O ₄		<l >L</l 	<Кр,>К <Кр	S S	11 11		1	Q ₁ (V) Q ₁	B Q ₁	V V	G G	G G	Xi		kr	153	330,5	1,360
Alcohol \rightarrow <i>Ethanol</i>																			
Alkyd resins and lacquers Alkylaluminum compounds		S S	-	<Кр <Кр	D	53A 53A		1	$Q_1(V)$ $Q_1(S)$	B	M ₁ M ₁	G G	G G	3,4,U C,F,3		fl fl			0,81,8
Allyl alcohol (2-Propene-1-ol)	C ₃ H ₆ O	TA	-	< 80	D	53A		1	$Q_1(S)$	B	E E	G	G	T,N	2	fl	-129	97	0,852
Alum																			
(Potassium aluminum sulphate, 48,4 % aqueous	KAI(SO ₄) ₂ *12H ₂ O		<l >L</l 	<kp,>K <kp< td=""><td>S S</td><td>11</td><td></td><td>1</td><td>Q₁(V) Q₁</td><td>B Q₁</td><td>V V</td><td></td><td>G G</td><td>С</td><td></td><td>kr</td><td>-16</td><td>101</td><td>1,76</td></kp<></kp,>	S S	11		1	Q ₁ (V) Q ₁	B Q₁	V V		G G	С		kr	-16	101	1,76
solution) Aluminum chlorate	N(CIO ₃) ₃		<l< td=""><td><kp,>K</kp,></td><td>D</td><td>53A</td><td></td><td>1</td><td>Q₁(V)</td><td>B</td><td>M₁</td><td>G</td><td>G</td><td>3,0</td><td></td><td>kr</td><td></td><td></td><td></td></l<>	<kp,>K</kp,>	D	53A		1	Q ₁ (V)	B	M ₁	G	G	3,0		kr			
Aluminum chloride	AICI ₃		<l< td=""><td><30,>K</td><td>S,Q</td><td>62</td><td>QW</td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>V</td><td>М</td><td>М</td><td>C,3</td><td></td><td>kr</td><td></td><td>183(S)</td><td>2,44</td></l<>	<30,>K	S,Q	62	QW	1	$Q_1(V)$	В	V	М	М	C,3		kr		183(S)	2,44
Aluminum fluoride	AICI ₃ AIF ₃		- <l< td=""><td>>30 <30,>K</td><td>DS</td><td>53A 11</td><td>SW</td><td>1</td><td>$Q_1(V)$ $Q_1(V)$</td><td>B</td><td>M₁ E</td><td>G</td><td>G</td><td>C,2,3 Xi</td><td></td><td>kr</td><td>1260(S)</td><td></td><td>2,88</td></l<>	>30 <30,>K	DS	53A 11	SW	1	$Q_1(V)$ $Q_1(V)$	B	M ₁ E	G	G	C,2,3 Xi		kr	1260(S)		2,88
	AIF ₃		>L	<kp< td=""><td>S</td><td>02</td><td></td><td>3</td><td></td><td>Q₁</td><td>M₁</td><td>M</td><td>G</td><td></td><td></td><td></td><td></td><td></td><td>.,</td></kp<>	S	02		3		Q ₁	M ₁	M	G						.,
Aluminum hydroxide diacetate (aluminum acetate basic)			<l< td=""><td><40</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>E</td><td>G</td><td>G</td><td>Xi</td><td></td><td>fl</td><td></td><td></td><td></td></l<>	<40	S	11		1	$Q_1(V)$	В	E	G	G	Xi		fl			
Aluminum nitrate	AI(NO ₃) ₃		<l< td=""><td>< Kp, > K</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>B</td><td>E</td><td>G</td><td>G</td><td>Xi,0</td><td></td><td>kr</td><td>73</td><td>135(Z)</td><td>0.71</td></l<>	< Kp, > K	S	11		1	$Q_1(V)$	B	E	G	G	Xi,0		kr	73	135(Z)	0.71
Aluminum sulfate	$AI_2(SO_4)_3$	I	< L	< Kp, > K	S,Q	62		1	Q ₁ (V)	В	E	G	G	Xn,3,6	I	kr	770(Z)		2,71

Media								Mech	anical	Seal	-	-	-	Addit	tional in	nforma	ation on the me	dium	_
Code of materials and legend see inside of	Chemical formula	Remark	Concentration %	Temp. °C	Arrange- ment	Auxil. piping	Addit. measures	Seal type		Ma	aterials N 127			Hazard warnings	TLV- value	ioi	Melting temperature	Boiling point	Density g/cm ³
back cover. Please observe		Re	ntrati			uxil. p	. mea	Sea			1					l con	°C	°C	
the note on page 1.			once			Ā	Addit.		1	2	3	4	5			Normal			
									face	ace	seal	Ē	irs			Z			
									Seal f	Seal face	Sec. 3	Spring	Others						
1		2	3	4	5	6	7	8	0,	0,				10	11	12	13	14	15
Amidosulfuric acid (Amidosulfonic-,																			
Sulfamidic, Sulfamic acid)			<l< td=""><td><kp,>K</kp,></td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td></td><td>205(Z)</td><td>2,1</td></l<>	<kp,>K</kp,>	S	11		1	$Q_1(V)$	В	M ₁	G	G	Xi		kr		205(Z)	2,1
Amines (not specified)		S	-	<Кр	S,Q	62		1	Q ₁ (V)	В	M ₂	G	G	U		fl			
Aminoethanols: 1-Aminoethanol	(CH ₂) ₂ NH ₂ OH		<l< td=""><td><kp,>K</kp,></td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td></td><td></td><td>kr</td><td>9599</td><td>110</td><td></td></l<>	<kp,>K</kp,>	S	11		1	$Q_1(V)$	В	M ₂	G	G			kr	9599	110	
2-Aminoethanol														X O			40	474	4 000
(Ethanolamine) Aminosulfonic acid	(CH ₂) ₂ NH ₂ OH	TA	-	<Кр <Кр,>К	D	53A 53A		1	$Q_1(V)$ $Q_1(V)$	B B	M ₂ M ₁	G	G	Xn,C Xi	3	fl kr	10 205(Z)	171	1,022 2,1
Ammonia	NH ₃		-	<40	D	53A		1	$Q_1(S)$	B	E	G	G	T,C, 1,N	50	ga	-78	-33	(-)
	NH ₃		-	TG	D	53A		1	$Q_1(S)$	В	M ₂	G	G	T,C,1,N					
Ammonia aqu. solutions: Caustic ammonia	NH ₄ OH		~29	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>C,N</td><td></td><td>fl</td><td></td><td></td><td>0,9</td></kp<>	D	53A		1	$Q_1(S)$	В	M ₂	G	G	C,N		fl			0,9
Spirits of salmiac	NH ₄ OH		~10	<40	S,Q	62		1	$Q_1(S)$	В	Ē	G	G	C,N		fl			0,957
Ammonium acetate	H ₃ CCOONH ₄ H ₃ CCOONH ₄		<l <l< td=""><td><60,>K <kp< td=""><td>S S</td><td>11 11</td><td></td><td>1</td><td>$Q_1(S)$ $Q_1(S)$</td><td>B B</td><td>E M₂</td><td>G G</td><td>G G</td><td></td><td></td><td>fe</td><td>113 (Z90 °C)</td><td></td><td>1,171</td></kp<></td></l<></l 	<60,>K <kp< td=""><td>S S</td><td>11 11</td><td></td><td>1</td><td>$Q_1(S)$ $Q_1(S)$</td><td>B B</td><td>E M₂</td><td>G G</td><td>G G</td><td></td><td></td><td>fe</td><td>113 (Z90 °C)</td><td></td><td>1,171</td></kp<>	S S	11 11		1	$Q_1(S)$ $Q_1(S)$	B B	E M ₂	G G	G G			fe	113 (Z90 °C)		1,171
Ammonium alum	NH ₄ AI(SO ₄) ₂ * ₁₂ H ₂ O		<l< td=""><td><60,>K</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>B</td><td>V</td><td>G</td><td>G</td><td></td><td></td><td>kr</td><td>109</td><td></td><td>1,64</td></l<>	<60,>K	S	11		1	$Q_1(V)$	B	V	G	G			kr	109		1,64
Ammonium bromide	NH ₄ Br		<l< td=""><td><kp,>K</kp,></td><td>S,Q</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xi,6</td><td></td><td>kr</td><td>452(S)</td><td></td><td>2,55</td></l<>	<kp,>K</kp,>	S,Q	11		1	$Q_1(V)$	В	M ₁	G	G	Xi,6		kr	452(S)		2,55
Ammonium carbamate → Urea																			
Ammonium carbonate	(NH ₄) ₂ CO ₃		<l< td=""><td><60,>K</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>E</td><td>G</td><td>G</td><td>Xn</td><td></td><td>kr</td><td></td><td></td><td></td></l<>	<60,>K	S	11		1	$Q_1(V)$	В	E	G	G	Xn		kr			
Ammonium chloride (Salmiac)	NH ₄ CI		<l< td=""><td><30,>K</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>E</td><td>G</td><td>G</td><td>Xn,Xi</td><td></td><td>kr</td><td></td><td>338(S)</td><td>1,531</td></l<>	<30,>K	S	11		1	$Q_1(V)$	В	E	G	G	Xn,Xi		kr		338(S)	1,531
	NH₄CI NH₄CI		<l <l< td=""><td><60 <kp< td=""><td>S D</td><td>11 53A</td><td></td><td>5</td><td>Q₁</td><td>Q₁ B</td><td>E M₂</td><td>M G</td><td>M G</td><td>2</td><td></td><td></td><td></td><td></td><td></td></kp<></td></l<></l 	<60 <kp< td=""><td>S D</td><td>11 53A</td><td></td><td>5</td><td>Q₁</td><td>Q₁ B</td><td>E M₂</td><td>M G</td><td>M G</td><td>2</td><td></td><td></td><td></td><td></td><td></td></kp<>	S D	11 53A		5	Q ₁	Q ₁ B	E M ₂	M G	M G	2					
	NH ₄ CI		>L	< кр < Кр	S	01 01		4	Q ₁ (V) Q ₁	Q ₁	M ₂	M	G	Z					
Ammonium fluorides:				K										TOO			400	000(7)	4.5
Ammonium hydrogen fluoride Neutral ammonium fluoride	(NH ₄)HF ₂ NH₄F		< L < L	>Кр <Кр	D D	54 54		1	Q ₁ Q ₁	B B	M ₂ M ₂	G G	G	T,C,2 T,2		kr kr	126 160	238(Z)	1,5 1,0
Ammonium hydrogen	4										-								
carbonate Ammonium hydroxide	(NH ₄)HCO ₃		<l< td=""><td><kp,>K</kp,></td><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>E</td><td>G</td><td>G</td><td>Xn</td><td></td><td>kr</td><td>106 (Z60 °C)</td><td></td><td>1,58</td></l<>	<kp,>K</kp,>	S	11		1	Q ₁ (V)	В	E	G	G	Xn		kr	106 (Z60 °C)		1,58
→ Ammonia aqu. Solutions																			
Ammonium nitrate	NH ₄ NO ₃		<l< td=""><td><kp,>K</kp,></td><td>S,Q</td><td>62</td><td>D</td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>E</td><td>G</td><td>G</td><td>3,0</td><td></td><td>kr</td><td>170</td><td></td><td>1,73</td></l<>	<kp,>K</kp,>	S,Q	62	D	1	$Q_1(V)$	В	E	G	G	3,0		kr	170		1,73
Ammonium oxalate monohydrate	(COONH ₄) ₂ •H ₂ O		<10	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q₁</td><td>Q₁</td><td>M₂</td><td>G</td><td>G</td><td>Xn,3</td><td></td><td>kr</td><td>70(Z)</td><td></td><td>1,5</td></kp<>	D	53A		1	Q ₁	Q ₁	M ₂	G	G	Xn,3		kr	70(Z)		1,5
Ammonium persulfate	(0001114)/2 11/20		10	чцр	U	00/1			u 1	αı	1112	u	u	711,0		N	10(2)		1,0
(Ammonium peroxodisulfate)	(NH ₄) ₂ S ₂ O ₈		<l< td=""><td><kp,>K</kp,></td><td>S,Q</td><td>62</td><td></td><td>1</td><td>Q₁</td><td>Q</td><td>M₂</td><td>G</td><td>G</td><td>Xn,Xi,3,0</td><td></td><td>kr</td><td>120(Z)</td><td></td><td>1,98</td></l<>	<kp,>K</kp,>	S,Q	62		1	Q ₁	Q	M ₂	G	G	Xn,Xi,3,0		kr	120(Z)		1,98
Ammonium phosfate, secondary	(NH ₄) ₂ HPO ₄		<l< td=""><td><60,>K</td><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>E</td><td>G</td><td>G</td><td></td><td></td><td>kr</td><td>155(Z)</td><td></td><td>1,619</td></l<>	<60,>K	S	11		1	Q ₁ (V)	В	E	G	G			kr	155(Z)		1,619
Ammonium sulfate	(NH ₄) ₂ SO ₄		<l< td=""><td><kp,>K</kp,></td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>E</td><td>G</td><td>G</td><td></td><td></td><td>kr</td><td>235280(Z)</td><td></td><td>1,77</td></l<>	<kp,>K</kp,>	S	11		1	$Q_1(V)$	В	E	G	G			kr	235280(Z)		1,77
Ammonium thiocyanate (Ammonium rhodanide)	NUL CON								0.00	n				¥-			140	170(7)	10
Amyl acetate \rightarrow Acetic	NH ₄ SCN	TA	<l< td=""><td><Кр,>К</td><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn</td><td></td><td>kr</td><td>149</td><td>170(Z)</td><td>1,3</td></l<>	<Кр,>К	S	11		1	Q ₁ (V)	В	M ₁	G	G	Xn		kr	149	170(Z)	1,3
acid pentyl esters																			
Amyl alcohols → Pentanols																			
Aniline dyes		S	-	<80	S	11		1	$Q_1(S)$	В	M ₂	G	G	U		fl			
Aniline hydrochloride																			
(aniline salt) Aniline, aniline oil	C ₆ H ₅ NH ₃ Cl	TA TA	<l _</l 	<kp TG</kp 	D	53A 53A		1	$Q_1(V)$	B B	M ₁	G	G	T,Xi,R40,2,3,N T,Xi,R40,3,N	2	kr fl	198 -6	245 184	1,22 1,023
Annine, annine on Anthracene	C ₆ H ₇ N C ₁₄ H ₁₀	TA	Sch	>F <kp< td=""><td>S,Q</td><td>53A 62</td><td>H,D</td><td>6</td><td>Q₁(S) A</td><td>Q₁</td><td>M₂ G</td><td>M₆</td><td>T4</td><td>1,XI,R4U,3,N Xn,6</td><td>2</td><td>fl kr</td><td>-0</td><td>342</td><td>1,023</td></kp<>	S,Q	53A 62	H,D	6	Q ₁ (S) A	Q ₁	M ₂ G	M ₆	T4	1,XI,R4U,3,N Xn,6	2	fl kr	-0	342	1,023
Anthracene oil	-14''10	TA,G	Sch	>F <kp< td=""><td>S,Q</td><td>62</td><td>H,D</td><td>6</td><td>A</td><td>Q₁</td><td>G</td><td>M₆</td><td>T4</td><td>T,R45,6</td><td></td><td>kr</td><td></td><td></td><td>.,_0</td></kp<>	S,Q	62	H,D	6	A	Q ₁	G	M ₆	T4	T,R45,6		kr			.,_0
Antichlor																			
→ Sodium thiosulfate Apple juice, sauce, cider, wine		N	-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(S)</td><td>В</td><td>Р</td><td>G</td><td>G</td><td></td><td></td><td></td><td></td><td></td><td></td></kp<>	S	11		1	Q ₁ (S)	В	Р	G	G						
Apple Juce, sauce, cluer, whe Arcton \rightarrow <i>Refrigerants</i>				< ivp	0				u1(0)	J		u	u						
Argon	Ar		-	>-20	D	53A		1	$Q_1(S)$	В	M ₁	G	G	1		ga	-189	-186	
Aromatic hydrocarbons $\rightarrow PTY$																			
$\rightarrow BTX$ Arrack			-	<60	S	11		1	Q ₁ (S)	В	E	G	G			fl			
Arsenic acid	H ₃ AsO ₄	TA	-	<00 <kp< td=""><td>D</td><td>53A</td><td>SW</td><td>1</td><td>Q₁(3)</td><td>Q₁</td><td>M₁</td><td>G</td><td>G</td><td>T,R45,2,N</td><td>*</td><td>fl</td><td>35,5</td><td>120</td><td>2,5</td></kp<>	D	53A	SW	1	Q ₁ (3)	Q ₁	M ₁	G	G	T,R45,2,N	*	fl	35,5	120	2,5
Asphalts (molten)	J 4	N	-	<120	S	02	Н	1	$Q_1(S)$	В	V	G	G	, -,-,		fe	70150	>370	1,01,2
			-	<200 >200	S S,Q	01 62	H H,D	1 6	Q ₁ (S) A	B Q ₁	M ₁ G	G M ₆	G T4	6					
ASTM test oils No. 1 to 4			-	<100	S,u	11	ц, U	1	$Q_1(S)$	u ₁ B	V	G	G	U		fl			
Aviation petrol, av. gasoline		TA,G	-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(S)</td><td>В</td><td>۷</td><td>G</td><td>G</td><td>T,Xn,R45</td><td></td><td>fl</td><td>bis <-58</td><td>40160</td><td>0,70,75</td></kp<>	S	11		1	Q ₁ (S)	В	۷	G	G	T,Xn,R45		fl	bis <-58	40160	0,70,75

Media	_	-	-	-		-	-	Mech	anical	Seal	-	-	-	libbA	tional in	forma	tion on the me	dium	
Code of materials and	Chemical	ark	%	Temp.	Arrange-	lig				Ma	aterials			Hazard warnings	TLV-		Melting	Boiling	Density
legend see inside of back cover.	formula	Remark	Concentration %	°C	ment	Auxil. piping	Addit. measures	Seal type		E	N 1275	56			value	Normal condition	temperature °C	point °C	g/cm ³
Please observe			entra			Auxil	t.	s.	1	2	3	4	5			al co	U	U	
the note on page 1.			Conc				Addi					4	J			Norm			
									ace	Seal face	Sec. seal	Ē	irs						
									Seal face	eal f	e.	Spring	Others						
1		2	3	4	5	6	7	8	S	S	~			10	11	12	13	14	15
B Davium aklarida	DaCl		- 1	.00	0.0	60		4	0.00	D	V			T Va C	40 F	lar	060	1500	0.00
Barium chloride Barium chromate suspension	BaCl ₂ BaCrO ₄		<l< td=""><td><60 <60</td><td>S,Q S,Q</td><td>62 62</td><td>QW</td><td>1 5</td><td>$Q_1(V)$ Q_1</td><td>B Q₁</td><td>V</td><td>G</td><td>G</td><td>T,Xn,6 Xn,6</td><td>#0,5 #0,5</td><td>kr kr</td><td>960</td><td>1560</td><td>3,86 4,5</td></l<>	<60 <60	S,Q S,Q	62 62	QW	1 5	$Q_1(V)$ Q_1	B Q ₁	V	G	G	T,Xn,6 Xn,6	#0,5 #0,5	kr kr	960	1560	3,86 4,5
Barium hydroxide	Ba(OH) ₂		<l< td=""><td>< 60</td><td>S,Q</td><td>62</td><td>QW</td><td>1</td><td>$Q_1(V)$</td><td>B</td><td>E</td><td>G</td><td>G</td><td>C,6</td><td>#0,5</td><td>kr</td><td></td><td></td><td>4,5</td></l<>	< 60	S,Q	62	QW	1	$Q_1(V)$	B	E	G	G	C,6	#0,5	kr			4,5
	Ba(OH) ₂		<10	<10	S,Q	62	QW	5	Q ₁	Q_1	E	G	G	С,6					
Barium nitrate	Ba(NO ₃) ₂ Ba(NO ₃) ₂		<l <20</l 	<80 <80	S,Q S,Q	62 62	QW QW	1 5	Q ₁ (V) Q ₁	B Q ₁	V V	G G	G	Xn,6,0 Xn,6,0	#0,5	kr	593	600(Z)	3,24
Battery acid \rightarrow Sulfuric acid	54(1103)2		-20		0,0	02	u		u l	a				, uitoito					
Beer		Ν	-	<80	S	01		1	Q ₁	Q_1	V	G	G			fl			
Beer yeast, -wort, -mash		N	-	<80	S	01		1	Q ₁	Q ₁	V	G	G			fl			
Beet sugar → <i>Saccharose</i> Benfield solution																			
(30 % K ₂ CO ₃ +3 % DEA +																			
$H_20 + CO_2)$		G		<110	S	32		X	Q ₃₂	Q ₃	E	G	G	Xi			~60(K)		1,21,3
Benzene Benzoic acid	С ₆ Н ₆	TA	- <l< td=""><td><kp <100</kp </td><td>DS</td><td>53A 11</td><td></td><td>1</td><td>$Q_1(S)$ $Q_1(S)$</td><td>B</td><td>M₁</td><td>G</td><td>G</td><td>T,Xn,Xi,R45,R46,F,6 Xn</td><td>*</td><td>fl kr</td><td>122</td><td>80 249</td><td>0,879 1,266</td></l<>	<kp <100</kp 	DS	53A 11		1	$Q_1(S)$ $Q_1(S)$	B	M ₁	G	G	T,Xn,Xi,R45,R46,F,6 Xn	*	fl kr	122	80 249	0,879 1,266
Denzoio aciu	$C_7 H_6 O_2 \\ C_7 H_6 O_2$		<l <10</l 	<100	S	11		2	Q ₁	Q_1	V	G	G	All		KI	122	249	1,200
D 11111	C7H602	T.	-	>F<200	S	02	(H)	3	Q ₁	Q ₁	M ₁	M	G			6	4.2	001	1.00
Benzotrichloride Benzotrifluoride	C ₇ H ₅ Cl ₃	TA TA	-	<200 <60	D S,Q	53A 62		1		Q ₁ B	M ₁	G G	G	T,Xn,Xi,R45,2 6,F,N		fl fl	-4,8 -29	221 104	1,38 1,189
Benzyl alcohol	C ₇ H ₅ F ₃ C ₇ H ₈ O	IA	-	<100	S,u	11		1	$Q_1(V)$ $Q_1(S)$	B	M ₂	G	G	о,г,м Хn		fl	-29 -15	205	1,045
	C ₇ H ₈ O		-	<30	S	11		1	$Q_1(S)$	В	V	G	G						.,
Benzyl butyl phthalate (BBP) → Phthalic acid esters																			
Biphenyl	C ₁₂ H ₁₀	TA	-	>75 <kp< td=""><td>D</td><td>53A</td><td></td><td>6</td><td>Α</td><td>Q₁</td><td>G</td><td>M₆</td><td>T₄</td><td>Xi,3,N</td><td>0,2</td><td>kr</td><td>69</td><td>255</td><td>1,04</td></kp<>	D	53A		6	Α	Q ₁	G	M ₆	T ₄	Xi,3,N	0,2	kr	69	255	1,04
Bitumen	12 10	G	-	>F<200	S	01	Н	1	$Q_1(S)$	В	M ₁	G	G			fe		>370	0,951,1
Black liquor			-	<200	S	01	Н	6	A	Q ₁	G	M ₆	T ₄						
→ Digester liquor, basic																			
Blast furnace gas			-	<200	D	53A		1	$Q_1(V)$	В	M ₁	G	G	1		ga			
Bleaching earth suspension		G	<10	<100	S	11		5	Q ₁	Q ₁	V	G	G			fe			
Bleaching lye → Sodium hypochlorite,																			
→ Calcium hypochlorite									a (a)	-									
Blood		N	-	<60	S	11		1	Q ₁ (S)	В	Р	G	G			fl			
Boiler feed water → Water Bone fats		N	-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>v</td><td>G</td><td>G</td><td></td><td></td><td>fl</td><td></td><td></td><td></td></kp<>	S	11		1	$Q_1(S)$	В	v	G	G			fl			
Borax (Disodium tetraborate)	Na2B407*10H20		<l< td=""><td><60</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>P</td><td>G</td><td>G</td><td>Xn,R62</td><td></td><td>kr</td><td>75</td><td>1575(Z)</td><td>1,72</td></l<>	<60	S	11		1	$Q_1(V)$	В	P	G	G	Xn,R62		kr	75	1575(Z)	1,72
Boric acid	B(OH) ₃		<l< td=""><td><60</td><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>T,6</td><td></td><td>kr</td><td>169(Z)</td><td></td><td>1,52</td></l<>	<60	S,Q	62		1	$Q_1(V)$	В	V	G	G	T,6		kr	169(Z)		1,52
Boron trichloride (Trichloroborane)	BCl3		_	TG	D	53A		1	Q ₁ (V)	В	M ₁	G	G	T+,C,1		ga	-107	12,5	1,43 (0°C)
Boron trifluoride	5013			iu		JJA			u ₁ (v)	U	111	u	u	11,0,1		ya	-107	12,0	1,40 (0 0)
(Trifluoroborane)	BF3		-	TG	D	53A		1	Q ₁	Q ₁	M ₁	G	G	T+,C,1	1	ga	-127	-100	(+)
Brackish water \rightarrow Water Bread dough		N			D	53A		1	Q ₁ (S)	В	v	G	G						
Bread dough Brine \rightarrow Sodium chloride		IN .			U	JJA			u1(9)	D	v	ŭ	u						
Bromic acid	HBrO ₃		-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q₁</td><td>Q₁</td><td>M₁</td><td>G</td><td>G</td><td>T,C,2,6</td><td></td><td>fl</td><td></td><td></td><td></td></kp<>	D	53A		1	Q ₁	Q ₁	M ₁	G	G	T,C,2,6		fl			
Bromine	Br ₂		-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q₁</td><td>Q₁</td><td>M₁</td><td>G</td><td>G</td><td>T+,C,2,3,N</td><td>0,1</td><td>fl</td><td>-7</td><td>58</td><td>3,12</td></kp<>	D	53A		1	Q ₁	Q ₁	M ₁	G	G	T+,C,2,3,N	0,1	fl	-7	58	3,12
Bromine, aqueous (aqueous solution of bromine)	Br ₂		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q1</td><td>Q1</td><td>M₁</td><td>G</td><td>G</td><td>T+,C,3,6,N</td><td></td><td>fl</td><td></td><td></td><td></td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q1</td><td>Q1</td><td>M₁</td><td>G</td><td>G</td><td>T+,C,3,6,N</td><td></td><td>fl</td><td></td><td></td><td></td></kp<>	D	53A		1	Q1	Q1	M ₁	G	G	T+,C,3,6,N		fl			
BTX (benzene-toluene- xylene	Dig			×ιτρ	U	JJA			u ₁	uı	IVI1	u	u	11,0,0,0,11					
mixture)		TA	-	<Кр	S,Q	62		1	$Q_1(S)$	В	M ₁	G	G	T,Xn,Xi,R45,R46,R63,6,F	*	fl			
Bunker oil and fuel 1,3-Butadiene		TA/N TA	-	120 TG	S D	11 53A		1	$Q_1(S)$ $Q_1(S)$	B	V	G	G	T,R45 T,R45,R46,1,3,6,F+	*	fl	-109	-4,5	(+)
1,3-Butadiene Butanal → Butyraldehyde		IA		lu	U	JJA			u ₁ (3)	D	v	u	u	1,040,040,1,3,0,7+		ga	-109	-4,0	(+)
Butane:																			
Isobutane (2-methyl propane) n-Butane	C_4H_{10} C_4H_{10}	TA TA	-	<Кр <Кр	S,Q S,Q	62 62		1	$Q_1(S)$ $Q_1(S)$	A A	V V	G G	G G	4,F+ 4,F+	1000	ga	-159 -135	-12 -1	(-) (-)
Butanediols (Butylene glycols):		1/4		×κμ	ં,હ	02			u1(0)	A	V	u	u u	4,1 Ŧ	1000	ga	-100	-1	(-)
1,2-Butanediol	$C_4H_{10}O_2$		-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td></td><td></td><td>fl fl</td><td>-114</td><td>192</td><td>1,019</td></kp<>	S	11		1	$Q_1(S)$	В	M ₁	G	G			fl fl	-114	192	1,019
1,3-Butanediol 1,4-Butanediol	$C_4 H_{10} O_2$ $C_4 H_{10} O_2$			<kp <200</kp 	S S	11 11		1	$Q_1(S)$ $Q_1(S)$	B B	M ₁ M ₁	G G	G G	Xn		fl fl	<-50 20	207 230	1,005 1,020
2,3-Butanediol	$C_4H_{10}O_2$		-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td></td><td></td><td>fl</td><td>19</td><td>182</td><td>1,033</td></kp<>	S	11		1	$Q_1(S)$	В	M ₁	G	G			fl	19	182	1,033
Butanic acid → Butyric acid																			
Daryno dolu																			

Media Mechanical Seal										Additional information on the medium									
Code of materials and	Chemical	Remark	% u	Temp.	Arrange-	ping				Ма	aterials			Hazard warnings	TLV-	1	Melting	Boiling	Density
legend see inside of back cover.	formula	Rem	Concentration %	°C	ment	Auxil. piping	Addit. measures	Seal type		El	N 127	56		-	value	Normal condition	temperature °C	point °C	g/cm ³
Please observe the note on page 1.			ncent			Aux	ldit. r		1	2	3	4	5			rmal			
1.3			2				Ā		e	93	eal	5	s			2 N			
									Seal face	Seal face	Sec. seal	Spring	Others						
1		2	3	4	5	6	7	8	Š	Š	Š			10	11	12	13	14	15
Butanol: 1-Butanol	CH 0		_	<60	S	11		1	Q1(S)	В	E	G	G	Xn,Xi	100	fl	-90	118	0,813
2-Butanol	C ₄ H ₁₀ O C ₄ H ₁₀ O	TA	-	<80	S	11		1	$Q_1(S)$	В	E	G	G	Xi	100	fl	-115	100	0,811
lsobutanol tert. Butyl alcohol	C ₄ H ₁₀ O C ₄ H ₁₀ O	TA	-	<60 <60, <k< td=""><td>S S</td><td>11 11</td><td></td><td>1</td><td>Q₁(S) Q₁</td><td>B B</td><td>E</td><td>G G</td><td>G G</td><td>Xi Xn,F</td><td>100 100</td><td>fl kr</td><td>-108 26</td><td>108 82</td><td>0,806 0,776</td></k<>	S S	11 11		1	Q ₁ (S) Q ₁	B B	E	G G	G G	Xi Xn,F	100 100	fl kr	-108 26	108 82	0,806 0,776
Butanone																			
(Ethyl methyl ketone) Butene (Butylene):	C ₄ H ₈ O		-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>Q₁</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>7</td><td>200</td><td>fl</td><td>-86</td><td>80</td><td>0,805</td></kp<>	S	11		1	Q ₁	В	M ₂	G	G	7	200	fl	-86	80	0,805
1-Butene	C ₄ H ₈	TA	-	<Кр	S,Q	62		6	A	Q ₁	U ₁	T ₁	G ₁	4,5,F+		ga	-185	-7	(-)
cis-2-Butene Isobutene	C ₄ H ₈ C ₄ H ₈	TA TA	-	<Кр <Кр	S,Q S,Q	62 62		6 6	A	Q ₁ Q ₁	U ₁ U ₁	T ₁ T ₁	G ₁ G ₁	4,5,F+ 4,5,F+		ga ga	-139 -140	3 -7	(-) (-)
trans-2-Butene	C ₄ H ₈	TA	-	<Кр	S,Q	62		6	A A	Q ₁	U ₁	T ₁	G ₁	4,5,F+		ga	-105	1	(-)
Butter Buttermilk		N	-	<80 <80	S S	11 11		1	$Q_1(S)$ $Q_1(S)$	B	P	G G	G			pa fl			
Butyl acetate																			
\rightarrow Acetic acid esters Butyl alcohol \rightarrow Butanol																			
Butylamines:																			
1-Butylamine (1-Aminobutane)	C ₄ H ₁₁ N	TA	_	<kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>Q₁</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn,C,F,3,6</td><td>5</td><td>fl</td><td>-50</td><td>78</td><td>0,733</td></kp<>	S,Q	62		1	Q ₁	В	M ₁	G	G	Xn,C,F,3,6	5	fl	-50	78	0,733
İsobutylamine					,						· ·								
(2-Methyl-1-propylamine) sec. Butylamine	C ₄ H ₁₁ N	TA	-	< Kp	S,Q	62		1	Q ₁	В	M ₁	G	G	C,F,3,6	5	fl	-85	66	0,736
(2-Aminobutane)	$C_4H_{11}N$	TA	-	<Кр	S,Q	62		1	Q ₁	В	M ₁	G	G	Xn,C,F,3,6,N	5	fl	-104	63	0,724
Butylene → <i>Butene</i> Butyraldehydes:																			
Butyraldehyde (Butanal)	C ₄ H ₈ O		-	<kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>3,6,F</td><td></td><td>fl</td><td>-99</td><td>75</td><td>0,802</td></kp<>	S,Q	62		1	$Q_1(V)$	В	M ₂	G	G	3,6,F		fl	-99	75	0,802
lsobutyraldehyde (2- Methylpropanal)	C ₄ H ₈ O		-	<kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>3,6,F</td><td></td><td>fl</td><td>-66</td><td>64</td><td>0,794</td></kp<>	S,Q	62		1	$Q_1(V)$	В	M ₂	G	G	3,6,F		fl	-66	64	0,794
Butyrates → Butyric acid esters																			
Butyric acid:																			
Isobutyric acid n-Butyric acid	$C_4 H_8 O_2 \\ C_4 H_8 O_2$		-	<60 <60	S S	11 11		1	$Q_1(S)$ $Q_1(S)$	B B	M ₁ M ₁	G G	G G	C C		fl fl	-47 -6	155 163	0,950 0,959
Butyric acid esters (Butyrates)	1	S	-	<100	S	11		1	$Q_1(S)$	B	M ₂	G	G	U		fl	<0	<100	0,000
C								-											
Cable sealing compounds		S	-	<220	S	02	Н	6	A	Q ₁	U ₁	M ₆	G ₁			fe			
Calcium acetate	Ca(OCOCH ₃) ₂	S	- <	>220 <100	S S	02 11	Н	6	A $Q_1(V)$	Q ₁ B	G	M ₆ G	T ₄ G			fe fe	160(Z)		1,50
Calcium bisulfite (lye)				< 100	3	11			u ₁ (v)	D	C C	u	u			le	100(2)		1,00
→ Calcium hydrogen sulfite																			
Calcium carbonate → Lime powder suspension																			
Calcium chlorate	Ca(CIO ₃) ₂		<l< td=""><td><100</td><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>6,0</td><td></td><td>kr</td><td>340(Z)</td><td></td><td>2,711</td></l<>	<100	S,Q	62		1	$Q_1(V)$	В	V	G	G	6,0		kr	340(Z)		2,711
Calcium chloride	CaCl ₂ CaCl ₂		<l <l< td=""><td><25 <100</td><td>S S,Q</td><td>11 62</td><td></td><td>1</td><td>$Q_1(V)$ $Q_1(V)$</td><td>B B</td><td>V M1</td><td>G M</td><td>G M</td><td>Xi,3,6</td><td></td><td>kr</td><td>782</td><td>>1600</td><td>1,68</td></l<></l 	<25 <100	S S,Q	11 62		1	$Q_1(V)$ $Q_1(V)$	B B	V M1	G M	G M	Xi,3,6		kr	782	>1600	1,68
Calcium hydrogen sulfite	Ca(HSO ₃) ₂	V	L	<Кр	D	53A	LD.	1	$Q_1(V)$	В	M ₁	G	G	3,6		fl			
('Digester lye') Calcium hydroxide	Ca(HSO ₃) ₂	V	L	<kp< td=""><td>S,Q</td><td>01</td><td>kD</td><td>3</td><td>Q₁</td><td>Q₁</td><td>M₁</td><td>G</td><td>G</td><td>3,6</td><td></td><td>fl</td><td></td><td></td><td></td></kp<>	S,Q	01	kD	3	Q ₁	Q ₁	M ₁	G	G	3,6		fl			
→ Hydrated lime	Ca(00)		21	~ 20	0.2	60		1	0.00	0.00	M	M	M	Vp C D C O N					
Calcium hypochlorite	Ca(OCI) ₂ Ca(OCI) ₂		<l -</l 	<30 <kp< td=""><td>S,Q S,Q</td><td>62 62</td><td></td><td>1 4</td><td>Q₁(V) Q₁</td><td>Q₁(V) Q₁</td><td>M₂ M₂</td><td>M M</td><td>M G</td><td>Xn,C,2,6,0,N Xn,C,2,6,0,N</td><td></td><td>kr</td><td>100(Z)</td><td></td><td>2,35</td></kp<>	S,Q S,Q	62 62		1 4	Q ₁ (V) Q ₁	Q ₁ (V) Q ₁	M ₂ M ₂	M M	M G	Xn,C,2,6,0,N Xn,C,2,6,0,N		kr	100(Z)		2,35
Calcium nitrate	$Ca(NO_3)_2$ $Ca(NO_3)_2$		<l< td=""><td><kp <100</kp </td><td>S,Q S</td><td>62 62</td><td></td><td>1 5</td><td>Q₁(S) Q₁</td><td>B Q₁</td><td>V</td><td>G G</td><td>G G</td><td>Xi,6,0 Xi,6,0</td><td></td><td>kr</td><td>45</td><td></td><td>1,82</td></l<>	<kp <100</kp 	S,Q S	62 62		1 5	Q ₁ (S) Q ₁	B Q ₁	V	G G	G G	Xi,6,0 Xi,6,0		kr	45		1,82
Calcium phosphates (sludges)	Ca(NO ₃) ₂ Ca(PO ₄) ₂	G	F25	< 100 < Kp	S	62 01	kD	3	u ₁ Q ₁	u ₁ Q ₁	M ₁	G	G	Λι,υ,υ		kr kr	45		3,14
Calcium sulfate (suspension)	CaSO ₄		F25	< Kp	S	01	kD	3	Q ₁	Q ₁	v	G	G			kr			
Calgon (Polyphosphates), Calfort		®	<l< td=""><td><kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>E</td><td>G</td><td>G</td><td></td><td></td><td>kr</td><td></td><td></td><td></td></kp<></td></l<>	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>E</td><td>G</td><td>G</td><td></td><td></td><td>kr</td><td></td><td></td><td></td></kp<>	S	11		1	Q ₁ (V)	В	E	G	G			kr			
Calgonit R																			
(Sodium phosphate silicates) Calgonit S (Urea nitrate)	CH ₅ N ₃ O ₄	R	<l< td=""><td><Кр <Кр</td><td>S S</td><td>11 11</td><td></td><td>1</td><td>$Q_1(V)$ $Q_1(V)$</td><td>B B</td><td>E</td><td>G G</td><td>G</td><td></td><td></td><td>kr kr</td><td>152(Z)</td><td></td><td>1,69</td></l<>	<Кр <Кр	S S	11 11		1	$Q_1(V)$ $Q_1(V)$	B B	E	G G	G			kr kr	152(Z)		1,69
Cane sugar (solution)	011511304		<l <l< td=""><td>< кр < Кр</td><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>B</td><td>V</td><td>G</td><td>G</td><td>3,4</td><td></td><td>fl</td><td>102(2)</td><td></td><td>1,00</td></l<></l 	< кр < Кр	D	53A		1	$Q_1(V)$	B	V	G	G	3,4		fl	102(2)		1,00
Caprolactam, ϵ -	C ₆ H ₁₁ NO	TA		<kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td></td><td>F</td><td></td><td>00</td><td>000</td><td>1.010(00)</td></kp<>	S,Q	62		1	$Q_1(S)$	В	M ₁	G	G		F		00	000	1.010(00)
Carbamates (Urethanes)	C ₆ H ₁₁ NO	TA TA,S	<l F<5</l 	<200 <180	S D	01 53A	Н	6	Q ₁ Q ₁	Q ₁ B	U ₁ M ₂	M ₆ G	G ₁	Xn,Xi,6	5 mg	kr	69	268	1,013(80)
. ,		N	-	<200	D	53A	(H)	i	$Q_1(S)$	Ă	M ₁	G	G	T,Xi,3,6		fl			
Carbamides \rightarrow Urea Carbolic acid \rightarrow Phenol																			
Carbon dioxide																			
(aqueous solution)	CO ₂		<l< td=""><td><kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>P</td><td>G</td><td>G</td><td></td><td></td><td>fl</td><td></td><td></td><td></td></kp<></td></l<>	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>P</td><td>G</td><td>G</td><td></td><td></td><td>fl</td><td></td><td></td><td></td></kp<>	S	11		1	$Q_1(S)$	В	P	G	G			fl			

Media									hanical Seal					Additional information on the medium					
Code of materials and legend see inside of back cover.	Chemical formula	Remark	Concentration %	Temp. °C	Arrange- ment	Auxil. piping	Addit. measures	Seal type		Ма	aterials N 127			Hazard warnings	TLV- value	condition	Melting temperature °C	Boiling point °C	Density g/cm ³
Please observe the note on page 1.			oncentr			Auxil	lddit. m	S	1	2	3	4	5			Normal c			
1		2	3	4	5	6	7	8	Seal face	Seal face	Sec. seal	Spring	Others	10	11	12	13	14	15
Carbon dioxide (gas)	CO ₂		-	<60	D	53A		1	Q ₁ (S)	В	Р	G	G	1	5000	ga	10	-78(S)	(+)
Carbon dioxide (liquefied, min.	-																		
3 bar above PD) Carbon disulfide	CO ₂	TA	-	<kp< td=""><td>S,Q D</td><td>11 62</td><td></td><td>X</td><td>Q₁ Q₁</td><td>A</td><td>P M₁</td><td>G</td><td>G</td><td>4,6 T,Xi,R62,R63,F,3</td><td>5000 10</td><td>fl fl</td><td>-111</td><td>46</td><td>0,766 1,261</td></kp<>	S,Q D	11 62		X	Q ₁ Q ₁	A	P M₁	G	G	4,6 T,Xi,R62,R63,F,3	5000 10	fl fl	-111	46	0,766 1,261
Carbon monoxide	CS ₂ CO	IA	-	< Kp < 60	D	53A		1	$Q_1(S)$	Q ₁ B	P	G	G	T,1,4,F+	30	ga	-205	-191	(-)
Carbon tetrachloride	00			100	5	00/1		· ·	a1(0)	U		ŭ	ŭ	1,1,1,1	00	90	200	101	()
(Tetrachloromethane)	CCI ₄	TA	-	<60	S,Q	62		1	$Q_1(V)$	В	۷	G	G	T,R40,N	10	fl	-23	76	1,5924
Castor oil			-	<100	S	11		1	$Q_1(S)$	В	V	G	G			fl	-1018		0,96
Caustic ammonia → Ammonia aqu. Solutions																			
Caustic potash solution (Potassium hydroxide in aqueous solution)	KOH KOH KOH		<10 <20 -	<25 <60 <kp< td=""><td>S S D</td><td>11 11 53A</td><td></td><td>1 5 1</td><td>Q₁ Q₁ Q₁</td><td>Q₁ Q₁ Q₁</td><td>E E M₂</td><td>G G G</td><td>G G G</td><td>C,Xn C,Xn C,Xn,2,4</td><td></td><td>fl fl fl</td><td></td><td></td><td></td></kp<>	S S D	11 11 53A		1 5 1	Q ₁ Q ₁ Q ₁	Q ₁ Q ₁ Q ₁	E E M ₂	G G G	G G G	C,Xn C,Xn C,Xn,2,4		fl fl fl			
Caustic soda solution (Sodium hydroxide in aqueous solution)	NaOH NaOH NaOH NaOH NaOH NaOH		<10 <20 <50 <50 <50 <50 <50	<80>K <100>K <100>K <100>K <100>K <100>K <180	S,Q S,Q S,Q S,Q D D	62 62 62 62 53A 53A	QW QW SW SW	5 5 1 1	$\begin{array}{c} \mathbb{Q}_1\\ \mathbb{Q}_1\\ \mathbb{Q}_1\\ \mathbb{Q}_1\\ \mathbb{Q}_1\\ \mathbb{Q}_1\\ \mathbb{Q}_1\end{array}$	$egin{array}{c} Q_1 \\ Q_1 \\ Q_1 \\ Q_1 \\ Q_1 \\ Q_1 \\ Q_1 \end{array}$	E E E E M ₂	G G G G G	G G G G G	C C,3 C,3 C,3 C,3 C,2			10%~10 20%~25 30%~0 40%~15 50%~12 60%~50	10%~105 20%~110 30%~120 40%~130 50%~150 60%~160	10% 1,109 20% 1,219 30% 1,327 40% 1,430 50% 1,524 60% 1,109
Cellosolve (Ethylene glyol monoethyl ether)	C4H1002	TA,®	_	< Kp	S,Q	62		1	Q ₁ (S)	В	M ₁	G	G	T,Xn,R60	20	fl	-100	135	0,9311
Cellulose $\rightarrow Pulp$	0411002	in,o		ιψ	0,4	02			u ₁ (0)	U	111	u	u	1,711,1100	20		100	100	0,0011
Cement sludge			<60	<40	S,Q	62	kD	3	Q ₁	Q ₁	٧	G	G	3,6					
Cheese (cream)		N	-	<60	D	53A		1	Q ₁	Q ₁	۷	G	G	4		ра			
Chemical pulp → <i>Cellulose</i> Chinese wood oil																			
→ Wood oil Chloroacetic acid	C2H3CIO2	TA	<l< td=""><td><100</td><td>D</td><td>53A</td><td>SW</td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>T,C,2,N</td><td></td><td>kr</td><td>61</td><td>188</td><td>1,40</td></l<>	<100	D	53A	SW	1	$Q_1(V)$	В	M ₂	G	G	T,C,2,N		kr	61	188	1,40
Chlorinated biphenyls	2 3 2	TA,S	-	<60	D	53A		1	$Q_1(V)$	В	M ₁	G	G	Т	0,2	fl			
Chlorine	Cl ₂		-	<60	D	54		1	Q ₁	Q ₁	M ₁	G	G	T,Xi,1,2,3,6,N	0,5	ga	-101	-34	(+)
Chlorine bleaching lye → Sodium hypochlorite, Calcium hypochlorite										-									
Chlorine dioxide Chlorine lye	C10 ₂		-	<60	D	53A	SW	1	Q ₁	Q ₁	M ₁	G	G	T+,C,1,2,6,0,N	0,1	ga	-59	11	(+)
→ Sodium hypochlorite Chlorine water	Cl ₂ +H ₂ 0		L	<Кр	D	54		1	Q ₁ (V)	В	M ₁	G	G	C,2,6		fl			
Chloroacetone (1-Chlorine- 2-propanone)	C ₃ H ₅ CIO	TA	_	<60	S,Q	62		1	Q ₁ (V)	В	M1	G	G	T,3,N		fl	-44	119	1,123
Chlorobenzene	C ₆ H ₅ Cl	TA	-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>B</td><td>M₁</td><td>G</td><td>G</td><td>Xn,N</td><td>50</td><td>fl</td><td>-46</td><td>132</td><td>1,106</td></kp<>	D	53A		1	$Q_1(V)$	B	M ₁	G	G	Xn,N	50	fl	-46	132	1,106
Chlorofluorocarbons (CFC) $\rightarrow Refrigerants$																			
Chloroform Chloromethane	CHCI ₃	TA	-	<Кр	D	62		1	Q ₁ (S)	В	M ₁	G	G	Xn,Xi,R40	10	fl	-63	61	1,48
→ Methyl chloride Chloropicrine → Trichloronitromethane																			
Chlorosulfuric acid (Chlorosulfonic acid)	HOSO ₂ CI		-	<Кр	D	54		1	Q ₁	Q ₁	M ₁	G	G	C,Xi		fl	-80	152(Z)	1,75
Chlorothene → Trichloroethane																			
Chrome alum (Potassium chrome alum) Chromic acid	KCr(SO ₄) ₂ *12H ₂ O		<l< td=""><td><Кр</td><td>S,Q</td><td>62</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>6</td><td></td><td>kr</td><td>89</td><td></td><td>1,83</td></l<>	<Кр	S,Q	62		1	Q ₁ (V)	В	M ₁	G	G	6		kr	89		1,83
(Chromic anyhydride) \rightarrow Chromium trioxide																			
Chromium trioxide	CrO ₃		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q₁</td><td>Q_1</td><td>M₁</td><td>G</td><td>G</td><td>T+,C,R45,R46,R62,2,6,O,N</td><td>mg 0,1</td><td>kr</td><td>197</td><td>>230(Z)</td><td>2,7</td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q₁</td><td>Q_1</td><td>M₁</td><td>G</td><td>G</td><td>T+,C,R45,R46,R62,2,6,O,N</td><td>mg 0,1</td><td>kr</td><td>197</td><td>>230(Z)</td><td>2,7</td></kp<>	D	53A		1	Q ₁	Q_1	M ₁	G	G	T+,C,R45,R46,R62,2,6,O,N	mg 0,1	kr	197	>230(Z)	2,7
Citric acid	$C_6H_8O_7$		<l< td=""><td><Кр</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td>153</td><td>200(Z)</td><td>1,66</td></l<>	<Кр	S	11		1	$Q_1(S)$	В	V	G	G	Xi		kr	153	200(Z)	1,66
Citrus juices		N	-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(S)</td><td>В</td><td>V</td><td>G</td><td>G</td><td></td><td></td><td>fl</td><td></td><td></td><td></td></kp<>	S	11		1	Q ₁ (S)	В	V	G	G			fl			
Clairce → <i>Sugar juices</i> Clophen																			
→ Chlorinated biphenyls																			
Coal sludge				<60	S	32		1	U ₁	U ₁	Р	G	G			ра			
Coal tar (remove leakage selectively)		TA,G	-	< 180	S,Q	11	(H)	1	Q ₁ (S)	В	M ₁	G	G	T,R45,1,6	*	fl		1,11,2	
Cocoa butter (Cacao butter)		N	Sch	<100	S	11	. ,	1	$Q_1(S)$	В	V	G	G			ра	3335		0,975

Media		_	-					Mech	anical	Seal				Addi	tional i	nform	ation on the me	dium	_
Code of materials and	Chemical	2	%	Temp.	Arrange-	ē	1				aterials	s to		Hazard warnings	TLV-	i i	Melting	Boiling	Density
legend see inside of back cover.	formula	Remark	Concentration %	°C	ment	Auxil. piping	Addit. measures	Seal type		E	N 127	56			value	condition	temperature °C	point °C	g/cm ³
Please observe the note on page 1.			Icent			Aux	dit. n		1	2	3	4	5	-		Normal o			
uie nove on page r.			Col				Ad		Seal face	Seal face	Sec. seal	Spring	Others			Nor			
1		2	3	4	5	6	7	8						10	11	12	13	14	15
Coconut fat		Ν	-	>30 <tg< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>٧</td><td>G</td><td>G</td><td></td><td></td><td>ра</td><td>2023</td><td></td><td>0,880,9</td></tg<>	S	11		1	$Q_1(S)$	В	٧	G	G			ра	2023		0,880,9
Coconut oil		N	-	<160	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Cod-liver oil		Ν	-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>۷</td><td>G</td><td>G</td><td></td><td></td><td>fl</td><td></td><td></td><td>0,920,93</td></kp<>	S	11		1	$Q_1(S)$	В	۷	G	G			fl			0,920,93
Coffee (extract)		N	L	<60	S	11		1	Q ₁	Q_1	V	G	G			fe			
Coin		®	-	<30	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Coke oven gas			-	<160	D	53A		1	$Q_1(V)$	В	V	G	G	1,U	*	ga			
Cold zinc paint		G	<l< td=""><td><60</td><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>E</td><td>G</td><td>G</td><td>3,4</td><td></td><td>fe</td><td></td><td></td><td></td></l<>	<60	D	53A		1	$Q_1(S)$	В	E	G	G	3,4		fe			
Colza oil (Rapeseed oil)		N	-	<100	S	11		1	$Q_1(S)$	В	٧	G	G			fl	-102	350	0,91
Condensed milk		N	-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td></td><td></td><td>fl</td><td></td><td></td><td></td></kp<>	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Cooling brine → Calcium chloride																			
Copper (II) acetate	C4H6CuO4		<l< td=""><td><40</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>E</td><td>G</td><td>G</td><td>Xn</td><td></td><td>kr</td><td>115</td><td>~240(Z)</td><td>1,882</td></l<>	<40	S	11		1	$Q_1(V)$	В	E	G	G	Xn		kr	115	~240(Z)	1,882
Copper chlorides: Copper chloride	CuCl		<l< td=""><td><Кр</td><td>D</td><td>53A</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>E</td><td>G</td><td>G</td><td>Xn,N,2,3</td><td></td><td>kr</td><td>430</td><td>1490</td><td>4,14</td></l<>	<Кр	D	53A		1	Q ₁ (V)	В	E	G	G	Xn,N,2,3		kr	430	1490	4,14
Copper (II) chloride	CuCl ₂		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>B</td><td>E</td><td>G</td><td>G</td><td>Xn,N,2,3</td><td></td><td>kr</td><td>>300(Z)</td><td></td><td>3,386</td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>B</td><td>E</td><td>G</td><td>G</td><td>Xn,N,2,3</td><td></td><td>kr</td><td>>300(Z)</td><td></td><td>3,386</td></kp<>	D	53A		1	$Q_1(V)$	B	E	G	G	Xn,N,2,3		kr	>300(Z)		3,386
Copper (I) cyanide suspension	0(NO.)	TA	<10	<Кр	D	53A		1	$Q_1(V)$	B	M ₁	G	G	T+,N	5	kr	473	. 150(0)	2,92
Copper (II) nitrate	Cu(NO ₃) ₂ Cu(NO ₃) ₂		<l <l< td=""><td><60 <kp< td=""><td>S D</td><td>11 53A</td><td></td><td>5</td><td>Q₁ Q₁</td><td>Q₁ Q₁</td><td>E M₂</td><td>G</td><td>G</td><td>Xn,O Xn,O</td><td></td><td>kr</td><td></td><td>>150(S)</td><td></td></kp<></td></l<></l 	<60 <kp< td=""><td>S D</td><td>11 53A</td><td></td><td>5</td><td>Q₁ Q₁</td><td>Q₁ Q₁</td><td>E M₂</td><td>G</td><td>G</td><td>Xn,O Xn,O</td><td></td><td>kr</td><td></td><td>>150(S)</td><td></td></kp<>	S D	11 53A		5	Q ₁ Q ₁	Q ₁ Q ₁	E M ₂	G	G	Xn,O Xn,O		kr		>150(S)	
Corn mash		N	-	<Кр	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Corn oil		N	-	<100	S	11		1	$Q_1(S)$	В	V	G	G			fl	-1810		0,910,93
Cottonseed oil		N	-	<120	S	11		1	$Q_1(S)$	В	V	G	G			fl	-2		0,92
Cream		N	-	<60	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Creosot		TA	-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>T,R45</td><td></td><td>fl</td><td><-20</td><td>200220</td><td>1,081,09</td></kp<>	S	11		1	$Q_1(S)$	В	M ₁	G	G	T,R45		fl	<-20	200220	1,081,09
Cresols: m-Cresol o-Cresol p-Cresol	C ₇ H ₈ O C ₇ H ₈ O C ₇ H ₈ O	TA TA TA	Sch Sch	<Кр <Кр <Кр	D D D	53A 53A 53A		1 1 1	$\begin{array}{c} \mathbb{Q}_1(V)\\ \mathbb{Q}_1(V)\\ \mathbb{Q}_1(V)\end{array}$	A A A	M ₁ M ₁ M ₁	G G G	G G G	T,C T,C T,C	5 5 5	kr fl fe	31 11 36	191 203 202	1,05 1,03 1,018
Crude oil, free from solid particles		TA,N	-	<100	s	11		1	Q ₁ (S)	В	v	G	G	T,R45		fl			
Crude oil, refined		TA,N	-	<80	S	11		1	$Q_1(S)$	В	V	G	G	T,R45		fl			
Crude oil, with sand		TA,N	-	<100	S	11		1	Q ₁	Q ₁	V	G	G	T,R45		fl			
Crude oil + salt water		TA,N	-	<25	S	11		1	$Q_1(V)$	В	V	G	G	T,R45		fl			
Crude soap			-	>F<100	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Cryolith (suspension)	Na ₃ (AIF ₆)		<30	<kp< td=""><td>S</td><td>02</td><td>kD</td><td>3</td><td>Q₁</td><td>Q₁</td><td>E</td><td>G</td><td>G</td><td>T,Xn,N</td><td></td><td>kr</td><td>~1000</td><td></td><td>2,95</td></kp<>	S	02	kD	3	Q ₁	Q ₁	E	G	G	T,Xn,N		kr	~1000		2,95
Cumene (Isopropylbenzene)	C ₉ H ₁₂	TA	-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn,N</td><td>50</td><td>fl</td><td>-96</td><td>152 153</td><td>0,864</td></kp<>	D	53A		1	$Q_1(V)$	В	M ₁	G	G	Xn,N	50	fl	-96	152 153	0,864
Cupric sulphate (Blue vitriol)	CuSO ₄ *5H ₂ O		<l< td=""><td><kp< td=""><td>S</td><td>11</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>E</td><td>G</td><td>G</td><td>Xn</td><td></td><td>kr</td><td>560(Z)</td><td></td><td>3,603</td></kp<></td></l<>	<kp< td=""><td>S</td><td>11</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>E</td><td>G</td><td>G</td><td>Xn</td><td></td><td>kr</td><td>560(Z)</td><td></td><td>3,603</td></kp<>	S	11		5	Q ₁	Q ₁	E	G	G	Xn		kr	560(Z)		3,603
Curd		N	-	<60	S	11		1	$Q_1(S)$	В	V	G	G			ра			
Cutting fluid → Metal working lubricants																			
Cyanide of potassium → <i>Potassium cyanide</i>																			
Cyclohexane	C ₆ H ₁₂	TA	-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>F,Xn,Xi,N</td><td>300</td><td>fl</td><td>7</td><td>80</td><td>0,788</td></kp<>	S	11		1	$Q_1(S)$	В	V	G	G	F,Xn,Xi,N	300	fl	7	80	0,788
Cyclohexanol	C ₆ H ₁₂ O		-	>F <kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn,Xi,6</td><td>50</td><td>fe</td><td>25</td><td>161</td><td>0,962</td></kp<>	S,Q	62		1	$Q_1(S)$	В	M ₁	G	G	Xn,Xi,6	50	fe	25	161	0,962
Cyclohexanone	C ₆ H ₁₀ O		-	<kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn</td><td>*</td><td>fl</td><td>-26</td><td>155</td><td>0,964</td></kp<>	S,Q	62		1	$Q_1(S)$	В	M ₁	G	G	Xn	*	fl	-26	155	0,964
Cyclopentadiene	C ₅ H ₆	TA	-	<kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>1,6</td><td>75</td><td>fl</td><td>-97</td><td>40</td><td>0,802</td></kp<>	S,Q	62		1	$Q_1(S)$	В	M ₁	G	G	1,6	75	fl	-97	40	0,802
Cymene, p-; (1-Isopropyl-4-methyl- benzene)	C ₁₀ H ₁₄		-	<60	S	11		1	Q ₁ (V)	В	v	G	G	Xi		fl	-68	177	0,86

D																	
Decahydronaphthalene → Decalin																	
Decalin (Decahydronaphthalene): cis-Decalin trans-Decalin	C ₁₀ H ₁₈ C ₁₀ H ₁₈ C ₁₀ H ₁₈	TA TA	-	<Кр <Кр	S,Q S,Q	62 62	1	Q ₁ (S) Q ₁ (S)	B B	M ₁ M1	G G	G	C,N C,N	fl fl	-43 -30	196 187	0,896 0,870
Denatured alcohol → Ethanol																	
Desalinated water → Water																	
Desmodur R		®	-	<kp< td=""><td>D</td><td>53A</td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn,U</td><td>fl</td><td></td><td></td><td></td></kp<>	D	53A	1	$Q_1(S)$	В	M ₁	G	G	Xn,U	fl			
Desmodur T		TA,®	-	<kp< td=""><td>D</td><td>53A</td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>T+,Xi,R40</td><td>fl</td><td>21</td><td>251</td><td>1,22</td></kp<>	D	53A	1	$Q_1(S)$	В	M ₁	G	G	T+,Xi,R40	fl	21	251	1,22
Desmophen		®	-	<kp< td=""><td>D</td><td>53A</td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>U</td><td>fl</td><td></td><td></td><td></td></kp<>	D	53A	1	$Q_1(S)$	В	M ₁	G	G	U	fl			
Detergents		S			S	11	1	$Q_1(S)$	В	V	G	G					
Dextrin (Starch gum)		G	<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td></td><td>fe</td><td></td><td></td><td></td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td></td><td>fe</td><td></td><td></td><td></td></kp<>	D	53A	1	$Q_1(S)$	В	V	G	G		fe			
Dextrose \rightarrow <i>Glucose</i>																	

Media						Mech	nanical Seal					Additional information on the medium							
Code of materials and legend see inside of back cover.	Chemical formula	Remark	Concentration %	Temp. °C	Arrange- ment	Auxil. piping		Seal type		Ма	nterials N 127			Hazard warnings	TLV- value	condition	Melting temperature °C	Boiling point °C	Density g/cm ³
Please observe the note on page 1.			oncentr			Auxil	Addit. measures	s	1	2	3	4	5			Normal co		Ŭ	
1		2	3	4	5	6	7	8	Seal face	Seal face	Sec. seal	Spring	Others	10	11	12	13	14	15
Diacetone alcohol (4-Hydroxy-4-methyl- 2-pentanone)	C ₆ H ₁₂ O ₂		-	-4 <Кр	S,Q	62		1	Q ₁ (S)	В	M ₁	G	G	Xi,6	50	fl	-47	168	0,93
Diallyl phthalate → Phthalic acid esters Diammonium hydrogen																			
phosphate → Ammonium phosphate, secondary																			
Dibromoethane (Ethylene bromide)	$C_2H_4Br_2$		-	<100	D	53A		1	Q ₁ (V)	В	M ₂	G	G	T,Xi,R45,N	*	fl	10	132	2,2
Dibutyl ether Dibutyl phthalate (DBP) → Phthalic acid esters	C ₈ H ₁₈ O		-	<kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>R,6</td><td></td><td>fl</td><td>-98</td><td>142</td><td>0,769</td></kp<>	S,Q	62		1	Q ₁ (V)	В	M ₁	G	G	R,6		fl	-98	142	0,769
Dichlorobenzenes: 1,2-Dichlorobenzene (ortho-dichlorobenzene)	C ₆ H ₄ Cl ₂	TA	-	<kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>Q₁(S)</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn,Xi,N</td><td>50</td><td>fl</td><td>-17</td><td>180</td><td>1,306</td></kp<>	S,Q	62		1	Q ₁ (S)	В	M ₁	G	G	Xn,Xi,N	50	fl	-17	180	1,306
1,3-Dichlorobenzene (meta-dichlorobenzene) 1,4-Dichlorobenzene	C ₆ H ₄ Cl ₂	TA	-	<Кр	S,Q	11		1	Q ₁ (S)	В	M ₁	G	G	Xn,N		fl	-25	173	1,288
(para-dichlorobenzene) Dichloroethanes:	C ₆ H ₄ Cl ₂	TA	-	>F <kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn,Xi,R40,N</td><td>50</td><td>fe</td><td>53</td><td>174</td><td>1,46</td></kp<>	S,Q	62		1	$Q_1(S)$	В	M ₁	G	G	Xn,Xi,R40,N	50	fe	53	174	1,46
1,1-Dichloroethane 1,2-Dichloroethane Dichloroethenes:	$C_6H_4CI_2$ $C_6H_4CI_2$	TA TA		<Кр <Кр	S,Q S,Q	62 62		1	Q ₁ (V) Q ₁ (V)	B B	M ₁ M ₁	G G	G G	Xn,Xi,F T,Xn,Xi,R45,F	100 *	fl fl	-97 -36	57 83	1,175 1,26
1,1-Dichloroethene 1,2-Dichloroethene (cis-) 1,2-Dichloroethene (trans-)	$\begin{array}{c} C_6H_4Cl_2\\ C_6H_4Cl_2\\ C_6H_4Cl_2 \end{array}$	TA TA TA		<Кр <Кр <Кр	D S S	53A 11 11		1 1 1	$Q_1(S)$ $Q_1(S)$ $Q_1(S)$	B B B	V V V	G G G	G G G	Xn,R40,3,F+ Xn,F,N Xn,F,N	2 200 200	fl fl fl	-122 -81 -50	32 60 47*	1,213 1,284 1,257
Dichloromethan → Methylene chloride																			
Didecyl phthalat → Phthalic acid esters																			
Diesel fuel Diethanolamine		TA,G	-	<80	S	11		1	Q ₁ (S)	В	V	G	G			fl		170390	0,830,88
(DEA, 2,2'-Iminodiethanol) Diethyl ether	C ₄ H ₁₁ NO ₂		-	>F<180	S	11		1	Q ₁ (V)	В	M ₂	G	G	Xn,Xi		kr	28	268	1,093
('Ether', Ethyl ether) Diethyl phthalate (DEP) → Phthalic acid esters	C ₄ H ₁₀ O	TA	-	<Кр	S,Q	11		1	Q ₁ (S)	В	M ₂	G	G	Xn,F+		fl	-116	34	0,715
Diethylamine Diethylene glycol → Ethylene glycols	(H ₅ C ₂) ₂ NH	TA	-	<Кр	S,Q	62		1	Q ₁ (V)	В	M ₂	G	G	Xn,C,F	10	fl	-50	55	0,711
Diethylenetriamine Digester liquor, acidic	C ₄ H ₁₃ N ₃	TA V	-	<180 <140	S S	11 02	kD	1 3	$Q_1(V)$ Q_1	B Q ₁	M ₂ V	G M	G G	Xn,C		fl fl	-39	207	0,959
(Sulfite chemical pulp) Digester liquor, basic (Sulfate chemical pulp)		V V V		>140 <120 >120	D S D	53A 02 53A	kD	1 3 1		B Q ₁ B	M ₂ E M ₂	G M G	G G G	1,4		fl			
Diglycolic acid (2.2'-Oxydiacetic acid) Diisobutyl phthalate (DIBP)	C ₄ H ₆ O ₅		<l< td=""><td><60</td><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>E</td><td>G</td><td>G</td><td>Xn,Xi</td><td></td><td>fe</td><td>148</td><td></td><td></td></l<>	<60	S	11		1	Q ₁ (V)	В	E	G	G	Xn,Xi		fe	148		
→ Phthalic acid esters Diisodecyl phthalate (DIDP)																			
→ Phthalic acid esters Diisononyl phthalate (DINP) → Phthalic acid esters																			
Diisooctyl phthalate (DIOP) → Phthalic acid esters																			
Diluents (solvents for paints and lacquers)		S	_	<40	S	11		1	Q ₁ (S)	A	M ₁	G	G	U		fl			
Dimethyl formamide (DMF) Di-(methyl glycol)-phthalate → Phthalic acid esters	C ₃ H ₇ NO	TA	-	<Кр	S,Q	62		1	Q ₁ (S)	В	M ₂	G	G	T,Xn,Xi	10	fl	-61	153	0,9445
Dimethyl phthalate (DMP) → Phthalic acid esters																			
Dimethyl sulfate Dimethyl sulfoxide (DMSO)	C ₂ H ₆ O ₄ S C ₂ H ₆ OS	TA	-	<Кр <60	D S	53A 11		1	$Q_1(S)$ $Q_1(S)$	B B	M ₁ V	G G	G G	T+,C,R45	*	fl fl	-32 19	191 189	1,33 1,104
Dimethyl terephthalate (DMT)	C ₁₀ H ₁₀ O ₄ C ₁₀ H ₁₀ O ₄		<l Sch</l 	<60 >F <kp< td=""><td>S S</td><td>11 01</td><td>(H)</td><td>1 6</td><td>Q₁(S) A</td><td>B Q1</td><td>M₁ G</td><td>G M₆</td><td>G T₄</td><td></td><td></td><td>kr</td><td>141</td><td>282</td><td>1,35</td></kp<>	S S	11 01	(H)	1 6	Q ₁ (S) A	B Q1	M ₁ G	G M ₆	G T ₄			kr	141	282	1,35
→ Phthalic acid esters Dioctyl phthalate (DOP) → Phthalic acid esters				-					0.6	2							25	. 70	0.211
Dipentene	C ₁₀ H ₁₆	TA	-	<60	S	11		1	$Q_1(S)$	В	V	G	G	Xi,N		fl	-95	178	0,841

Media	_							Mech	anical	Seal				Addii	tional ir	forma	ation on the me	dium	
Code of materials and	Chemical	Remark	% u	Temp.	Arrange-	ping				Ма	aterials			Hazard warnings	TLV-	i	Melting	Boiling	Density
legend see inside of back cover.	formula	Ren	Concentration %	°C	ment	Auxil. piping	Addit. measures	Seal type		E	N 127	00		-	value	condition	temperature °C	point °C	g/cm ³
Please observe the note on page 1.			ncen			Aux	ddit.		1	2	3	4	5	-		Normal			
			2				Ā		93	3	al	_	6			٩			
									Seal face	Seal face	Sec. seal	Spring	Others						
1		2	3	4	5	6	7	8	Š	Š	s.			10	11	12	13	14	15
Dipentyl phthalate								ĺ					Ì	Ì					
→ Phthalic acid esters Diphenyl, diphenyl oxide																			
→ Heat transfer oils																			
Diphyl \rightarrow Heat transfer oils		®																	
Distilled water → Water Disulfurdecafluoride																			
→ Sulfur fluorides																			
Disulfur dichloride → Sulfur chlorides																			
Disulfur difluoride																			
→ Sulfur fluorides																			
Divinylbenzene (m-), (Vinylstyrene)	C ₁₀ H ₁₀	TA	_	<kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xi,N</td><td></td><td>fl</td><td>-67</td><td>199</td><td>0,9289</td></kp<>	S,Q	62		1	Q ₁ (V)	В	M ₁	G	G	Xi,N		fl	-67	199	0,9289
Dodecyl benzene	C ₁₈ H ₃₀		-	<60	S	11		1	$Q_1(S)$	В	V	G	G	,		fl	-7	331	0,863
Dowtherm \rightarrow Heat																			
transfer oils Drinking water, industrial		®																	
water → Water																			
Dye liquor with bleaching additives		G	_	<160	S	11		1	Q ₁	В	M ₁	G	G			fl			
Dye liquor		u	-	<100	3				u ₁	D	1VI 1	u	u						
without bleaching additives		G	-	<140	S	11		1	$Q_1(S)$	В	V	G	G			fl			
E																			
Edible oil		N	-	<100	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Egg liqueur		Ν	-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>3,4</td><td></td><td>fl</td><td></td><td></td><td></td></kp<>	D	53A		1	$Q_1(S)$	В	V	G	G	3,4		fl			
Egg yolk		N	-	<Кр	S,Q	62		1	$Q_1(S)$	В	V	G	G	3,4		fl			1,08
Electrophoretic varnishes		G	Sus		D	504		X	Q ₁	Q ₁	V	T ₆	F						
Enamel slip			Sus Sus	<40 <40	D	53A 53A		5 5	Q ₁	Q ₁	P P	G	G	4					
Engobes (special clays) Epichlorohydrine (ECH)	C ₃ H ₅ CIO	TA	-	<40 <kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q_1 $Q_1(S)$</td><td>Q₁ B</td><td>M₂</td><td>G</td><td>G</td><td>4 T,C,R45</td><td>*</td><td>fl</td><td>-48</td><td>117</td><td>1,18</td></kp<>	D	53A		1	Q_1 $Q_1(S)$	Q ₁ B	M ₂	G	G	4 T,C,R45	*	fl	-48	117	1,18
Epoxy resins and lacquers	03119010	TA	Sus	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>B</td><td>M₁</td><td>G</td><td>G</td><td>Xi,3,4,N</td><td></td><td>fl</td><td>10</td><td></td><td>1,10</td></kp<>	D	53A		1	$Q_1(V)$	B	M ₁	G	G	Xi,3,4,N		fl	10		1,10
Essential oils \rightarrow Volatile oils																			
Essotherm → Heat transfer oils		®																	
Esters (not specified);		(R)																	
also refer to										_				(T)					
→ Acetic acid esters Ethanal → Acetaldehyde		S	-	<kp,tg< td=""><td>S,Q</td><td>53A</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>(F),U</td><td></td><td>fl</td><td></td><td></td><td></td></kp,tg<>	S,Q	53A		1	$Q_1(S)$	В	M ₂	G	G	(F),U		fl			
Ethane	C ₂ H ₆	TA	-	<60	D	53A		1	$Q_1(S)$	В	V	G	G	F+,1		ga	-183	-88	(+)
Ethanediamine	-20				_				-1(-)	-		_		. ,.		3-			()
→ Ethylenediamine																			
Ethanediol \rightarrow <i>Ethylene glycol</i> Ethanol	C H OH	TA	-	< Kn	S	11		1	0 (8)	D	E	G	G	F	1000	fl	-114	78	0,794
Ethanolamines	C ₂ H ₅ OH	14		<kp< td=""><td>0</td><td>11</td><td></td><td></td><td>Q₁(S)</td><td>В</td><td></td><td>u</td><td>u</td><td>1</td><td>1000</td><td></td><td>-114</td><td>10</td><td>0,134</td></kp<>	0	11			Q ₁ (S)	В		u	u	1	1000		-114	10	0,134
→ Amino ethanols																			
Ethene \rightarrow <i>Ethylene</i>																			
Ethenyl \rightarrow Vinyl Ether \rightarrow Diethyl ether																			
Ether sulfates		S	-	<60	S	11		1	$Q_1(S)$	В	V	G	G	U		fl			
Ethyl acetate					Ū				~1(0)					, i i i i i i i i i i i i i i i i i i i					
→ Acetic acid ethyl ester																			
Ethyl acetoacetate	$CH_3COCH_2CO_2C_2H_5$		-	100	S	11		1	$Q_1(V)$	В	M ₂	G	G	Xi		fl	-45	180	1,025
Ethyl acrylate → Acrylic esters																			
Ethyl alcohol \rightarrow Ethanol																			
Ethylamine (Aminoethane)	C ₂ H ₇ N	TA	-	<60	D	53A		1	$Q_1(S)$	В	E	G	G	F+,Xi,1	10	ga	-80	17	(+)
Ethylbenzene	C ₈ H ₁₀	т,	-	< Kp	S,Q	62		1	$Q_1(S)$	B	M ₁	G	G	Xn,F	100	fl	-94	136	0,867
Ethylchloride (Chloroethane) Ethylene (Ethene)	C ₂ H ₅ Cl C ₂ H ₄	TA TA	-	<60 <-20	D	53A 53A	ThE	1 6	Q ₁ (V) A	B Q ₁	M ₁	G M ₆	G	Xn,R40,F+,1 F+,1	1000	ga na	-169	-138 -104	12(+) (-)
Ethylene bromide	6 ₂ n ₄	IA		<-20	U	JOH	THE	0	A	u	V	1/16	IVI	1+,1		ga	-109	-104	(-)
→ Dibromoethane																			
Ethylene chloride → Dichloroethenes																			
Ethylene chlorohydrin																			
(2-Chloroethanol)	C ₂ H ₅ CIO	TA	-	< Kp	D	53A		1	$Q_1(S)$	B	M ₁	G	G	T+	1	fl fl	-70	129	1,21
Ethylenediamine	C ₂ H ₈ N ₂	TA	-	<60	S,Q	62		1	$Q_1(S)$	В	E	G	G	Xn,C	10	fl	9	116	0,9
MediaAdditional information on the mediumCode of materials and legend see inside of back cover.Chemical formulaTemme 0° Fig. $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 8$	Density g/cm ³ 15 1,12 1,113 1,128 1,1274 (-) 0,834																		
--	--																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15 1,12 1,113 1,128 1,1274 (-)																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,12 1,113 1,128 1,1274 (-)																		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,12 1,113 1,128 1,1274 (-)																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,12 1,113 1,128 1,1274 (-)																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,12 1,113 1,128 1,1274 (-)																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,113 1,128 1,1274 (-)																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,113 1,128 1,1274 (-)																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,128 1,1274 (-)																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,1274 (-)																		
Ethylene oxide C_2H_4O TA - <60 D 53A 1 $O_1(S)$ B M_2 G G T,Xi,R45,R46,F+,6 * ga -111 10 Ethyl ether Diethyl ether Ethyl formiate I I $O_1(S)$ B M_2 G G T,Xi,R45,R46,F+,6 * ga -111 10	(-)																		
Ethyl formiate	0,834																		
	0,834																		
Formic acid ethyl esters	0,834																		
2-Ethylhexanol (Isooctanol) C ₈ H ₁₈ O - <100 S 11 1 0 ₁ (S) B V G G Xi fi <-76 182																			
F																			
Faces (feces) N - <60 S 11 1 Q1 Q1 Q G G fil																			
Fats and fatty oils N - <200 S 11 1 Q ₁ (S) B M ₁ G G Fatty acids G - >F, <kp< td=""> S 11 1 Q₁(V) B M₁ G G fit</kp<>																			
Fatty alcohol sulfatesG </td <td></td>																			
Fatty alcohols G - <100 S 11 1 Q1(S) B V G G																			
Ferric phosphate solution in mineral acids L <100 D 53A SW 1 Q1(V) B M1 G G 2,U kr	2,87																		
FerricyanidesG<<<	2,01																		
Finishing agents, dressing																			
agents S - <kp< th=""> S 11 1 $Q_1(S)$ B V G G U fi Fir needle oils G - <60</kp<>	0,870,88																		
Fish glue N - <60 S,Q 11 1 Q ₁ (S) B V G G 3 fl	-,,																		
Fish liver oils N - <100 S 11 1 Q1(S) B V G G																			
Fish meal N Sus <60 S 02 1 Q1 V G G																			
Fish offals N Sus <60 S 02 1 Q1 V G G Fish offals N Sus <60																			
Fish oils N - <100 S 11 1 Q ₁ (S) B V G G fi Fish slurry N Sus <60																			
Fixative G <th< th=""> <t< td=""><td></td></t<></th<>																			
Fixing bath, acidic - <60 S 11 1 Q ₁ (S) B V G G fl																			
Flue gas desulphurization plants (FGD):																			
all acid suspensions V <25 <80 S 02 kD 3 Q1 Q1 V M M fil Fluoroacetic acid C2H3F02 TA <l< td=""> <kp< td=""> D 53A 1 Q1(V) B M1 G G T+,2,N kr 35 165</kp<></l<>	1,369																		
Hubble construction $C_{21/3}$ C_{2} H C_{L} C_{P} D DA I U_{1} D H_{1} U_{1}	1,303																		
Fluorosilicic acid $H_2(SiF_6)$ - <60 D 54 1 Q_1 B M_1 G G C,2 fl (Z)	1,3																		
H ² ₂ (SiF ₆) <30 <25 S 11 5 Q ₁ Q ₁ V M M Formaldehyde (Methanal) HCHO TA - <100	(+)																		
Formalin HCHO TA($\hat{\mathbf{w}}$ ~40 <kp 1="" 62="" q<sub="" s,q="">1(V) B M₂ G G T,C,R40,R43,1,3 fi</kp>	1,122																		
Formamide CH ₃ NO TA - <60 S 11 1 Q1(S) B E G G T,R61 fl 3 210	(40%) 1,13																		
Formic acid HCOOH TA 100 TG D 53A SW 1 $Q_1(V)$ B M_2 G G C,2 5 fl 8(100%) 101(100%)																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																			
HCOOH TA <30 <60 S 11 SS 1 Q ₁ (V) B M ₂ G G C HCOOH TA >30 <30 S 11 SS 1 Q ₁ (V) B M ₂ G G C C																			
$ HCOOH $ TA $ > 80 < 40 $ S $ 11 $ SS $ 1 0_1(V) $ B $ M_2 $ G $ $ G $ $ C $																			
HCOOH TA >90 <50 S 11 SS 1 0_1(V) B M2 G G C Formic acid ethyl ester																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,917																		
(Methyl formiate) C ₂ H ₄ O ₂ TA - < Kp S,Q 62 1 O ₁ (S) B M ₂ G G Xn,F+ 100 fl -100 32	0,97																		
FormyImorpholine, n- (4-Morpholine-																			
carboxaldehyde, NFM) C ₅ H ₉ NO ₂ - <80 S 11 1 O ₁ (S) B M ₁ G G f1 23 240	1,15																		
Freen \rightarrow Refrigerants Image: Constraint of the second																			
Fresh sludge (sewage works)-<60S02kD2 Q_{12} Q_{12} VGGFrigen \rightarrow Retrigerants(8)(8)(10)(10)(10)(10)(10)(10)																			
Fruit juices N - <60 S 11 1 Q1(S) B V G G																			
Fruit mash → Mashes																			
Fruit pulp → Mashes																			
Fuel oils: TA - <120 S 11 1 Q1 V G G Xn,R40,N fl																			
Fuel oil EL TA - <120 S 11 1 0,(S) B V G G Xn,R40,N fl Pp<-6 155390	< 0,86(15)																		
Fuel oil L TA - <120 S 11 1 Q ₁ (S) B V G G Xn,R40,N f1 Fuel oil M TA - <120	<1,10(15) <1,20(15)																		
Fuel oil S TA - <120 S 11 1 $0_1(s)$ B V G G Xn,R40,N -10 +40	()																		

Media									anical	Seal				Addi	tional ir	nforma	ation on the me	dium	
Code of materials and legend see inside of back cover.	Chemical formula	Remark	Concentration %	Temp. °C	Arrange- ment	Auxil. piping	Addit. measures	Seal type			aterials N 127			Hazard warnings	TLV- value	condition	Melting temperature °C	Boiling point °C	Density g/cm ³
Please observe			centi			Auxi	lit. m		1	2	3	4	5	-		nal c			
the note on page 1.			Con				Adc		Seal face	Seal face	Sec. seal	Spring	Others			Normal			
1		2	3	4	5	6	7	0	Se	Se	s	s		10	11	12	13	14	15
Fumaric acid	C4H4O4		3 <l< td=""><td>4 <100</td><td>S</td><td>11</td><td>1</td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>l v</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td>10</td><td>290(S)</td><td>1,625</td></l<>	4 <100	S	11	1	1	$Q_1(V)$	В	l v	G	G	Xi		kr	10	290(S)	1,625
Furfurol (Furfural, Furaldehyde)	C ₅ H ₄ O ₂	TA	-	<100	D	53A		1	$Q_1(S)$	В	M ₂	G	G	T,Xn,Xi,R40	5	fl	-36	162	1,159
Furfuryl alcohol	C ₅ H ₆ O ₂		-	<100	S,Q	62		1	Q ₁ (S)	В	M ₂	G	G	Xn	10	fl	-31	170	1,13
G																			
Gallic acid	C7H605		<l< td=""><td><100</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td>253(Z)</td><td></td><td>1,69</td></l<>	<100	S	11		1	$Q_1(S)$	В	V	G	G	Xi		kr	253(Z)		1,69
Galvanic baths			-	<60	S	11		1	$Q_1(V)$	В	V	G	G			fl			
$Gas \rightarrow Petrol$																			
Gas oil		TA	-	<140 <220	S S,Q	11 62		1	Q ₁ (S) Q ₁ (S)	B A	V M ₁	G G	G G	T,R45		fl fl			200360
Gas scrubber water			-	<60	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Gasoline \rightarrow <i>Petrol</i>																			
Gasoline-methanol mixture \rightarrow Petrol-methanol mixture																			
Gelatin			-	<100	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Gilotherm \rightarrow Heat transfer oils		®																	
Gingerbread dough			-	<60	D	53A		1	$Q_1(S)$	В	V	G	G	4		ра			
Glacial acetic acid \rightarrow Acetic acid																			
Glauber's salt → Sodium sulphate																			
Glazing slip			<50	<60	D	53A		5	Q ₁	Q_1	V	G	G	4		ра			
Glucose D- (Dextrose, Grape sugar)	C ₆ H ₁₂ O ₆		<l< td=""><td><100</td><td>s</td><td>11</td><td></td><td>1</td><td>Q₁(S)</td><td>В</td><td>v</td><td>G</td><td>G</td><td></td><td></td><td>kr</td><td>146</td><td></td><td>1,56</td></l<>	<100	s	11		1	Q ₁ (S)	В	v	G	G			kr	146		1,56
Glue			-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>3,4</td><td></td><td>fl</td><td></td><td></td><td></td></kp<>	D	53A		1	$Q_1(S)$	В	V	G	G	3,4		fl			
Glutamic acid (2-Aminoglutaric acid)	$C_5H_9NO_4$		<l< td=""><td><100</td><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td></td><td></td><td>kr</td><td>205(Z)</td><td></td><td></td></l<>	<100	S	11		1	Q ₁ (V)	В	M ₁	G	G			kr	205(Z)		
Glutaric acid (Pentene diacid)	C ₅ H ₈ O ₄		<l< td=""><td><kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td>97</td><td>303</td><td>1,43</td></kp<></td></l<>	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td>97</td><td>303</td><td>1,43</td></kp<>	S	11		1	$Q_1(V)$	В	M ₁	G	G	Xi		kr	97	303	1,43
Glycerol (1,2,3-Propan- etriol, Glycerine)	C ₃ H ₈ O ₃		-	<120	S	11		1	Q ₁ (S)	В	v	G	G			fl	19	290(Z)	1,261
Glycol \rightarrow Ethylene glycol																			
Glycol ethers		G	-	<100	S	11		1	$Q_1(S)$	В	E	G	G			fl			
Glycolic acid (Hydroxyacetic acid)	HOCH ₂ COOH	TA	<l< td=""><td><60</td><td>s</td><td>11</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>E</td><td>G</td><td>G</td><td>С</td><td></td><td>kr</td><td>80</td><td>100(Z)</td><td>1,26</td></l<>	<60	s	11		1	Q ₁ (V)	В	E	G	G	С		kr	80	100(Z)	1,26
Glycols (diols), general		G	-	<100	S	11		1	$Q_1(S)$	В	E	G	G			fl			
Grape sugar \rightarrow <i>D</i> -Glucose																			
Gypsum sludge	CaSO ₄ *2H ₂ O		<50	<60	D	53A		5	Q ₁	Q_1	V	G	G	4		ра			
Gypsum suspensions (from FGD, all of them)	CaSO ₄ *2H ₂ O		<25	<80	S	02	kD	3	Q ₁	Q_1	v	М	G			fl			

Н																		
Hair lotions		G	-	<40	S	11	1	$Q_1(S)$	В	V	G	G			fl			
Hair oils		G	-	<40	S	11	1	$Q_1(S)$	В	V	G	G			fl			
Hair shampoos		G	-	<60	D	53A	1	$Q_1(V)$	В	V	G	G			fl			
Halocarbon		®	-	<200	S	11	1	$Q_1(S)$	В	M ₁	G	G			fl			
Heat transfer oils: Vapour pressure at operating		G																
temperature <1 bar			-	<100	S	11	1	$Q_1(S)$	В	V	G	G			fl			
Vanaux pressure at appreting			-	<220	S,Q	62	1	Q ₁ (S)	A	M ₁	G	G	3		fl			
Vapour pressure at operating temperature < 2 bar Vapour pressure at operating			-	<400	S,Q	62	6	A	Q ₁	G	M ₆	T ₄	3		fl			
temperature > 2 bar			-	<400	D	53A	6	A	Q ₁	G	M ₆	T ₄	3		fl			
Helium	He		-	<80	D	53A	1	$Q_1(S)$	В	M ₁	G	G	1		ga	-272	-268	(-)
Heptane	C7H16	TA	-	<kp< td=""><td>S</td><td>11</td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>Xn,Xi,3,4,T,N</td><td>500</td><td>fl</td><td>-90</td><td>98</td><td>0,681</td></kp<>	S	11	1	$Q_1(S)$	В	V	G	G	Xn,Xi,3,4,T,N	500	fl	-90	98	0,681
Hexachlorobenzene (HCB, Perchlorobenzene)	C ₆ Cl ₆	TA	Sch	<kp< td=""><td>D</td><td>53A</td><td>6</td><td>Q₂₂</td><td>Q₁</td><td>G</td><td>M₅</td><td>м</td><td>T,R45,N</td><td></td><td>kr</td><td>231</td><td>323326</td><td>2,044</td></kp<>	D	53A	6	Q ₂₂	Q ₁	G	M ₅	м	T,R45,N		kr	231	323326	2,044
Hexachlorobutadiene (Perchlorobutadiene)	C4CI6	TA	-	< 80	D	53A	1	Q ₁ (V)	В	v	G	G	T,R40		fl	-20	215	1,68
Hexachloroethane (Perchloroethane)	C ₂ Cl ₆	TA	<l< td=""><td>< 80</td><td>D</td><td>53A</td><td>1</td><td>Q₁(S)</td><td>В</td><td>v</td><td>G</td><td>G</td><td>Xn,R40</td><td>1</td><td>kr</td><td></td><td>187(S)</td><td>2,09</td></l<>	< 80	D	53A	1	Q ₁ (S)	В	v	G	G	Xn,R40	1	kr		187(S)	2,09
Hexane, -n	C ₆ H ₁₄	TA	-	<kp< td=""><td>D</td><td>11</td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>Xn,Xi,R62,F,N</td><td>50</td><td>fl</td><td>-95</td><td>68</td><td>0,66</td></kp<>	D	11	1	$Q_1(S)$	В	V	G	G	Xn,Xi,R62,F,N	50	fl	-95	68	0,66
Hexan-2-one	C ₆ H ₁₂ O	TA	-	Кр	S,Q	62	1	$Q_1(S)$	В	M ₁	G	G	T,R62	5	fl	-57	127	0,83
Honey		N	-	<100	D	53A	1	$Q_1(S)$	В	V	G	G	3,4		ра			

Media	_						-	Mech	anical	ادم؟		-	-	tibbA	tional in	form	ition on the me	dium	
Code of materials and legend see inside of	Chemical formula	Remark	tion %	Temp. °C	Arrange- ment	Auxil. piping		Seal type		M	aterials N 127			Hazard warnings	TLV-	í.	Melting temperature	Boiling point	Density g/cm ³
back cover. Please observe the note on page 1.		æ	Concentration %			Auxil.	Addit. measures	Sea	1	2	3	4	5	-		Normal condition	°C	°C	
			00				Ac		Seal face	Seal face	Sec. seal	Spring	Others			N			
1		2	3	4	5	6	7	8	Seal	Seal	Sec.	Sp	ŧ	10	11	12	13	14	15
Hop mash \rightarrow <i>Mashes</i>																			
Hot water → <i>Water</i> Hydrated lime (Suspension of																			
calcium hydroxide) Hydraulic fluids HFA, HFB,	Ca(OH) ₂		<10	<80	S	11	kD	5	Q ₁	Q ₁	V	G	G	Xi		kr			2,23
HFC, HFD			-	<70 <80	S S	11		1	$Q_1(S)$	B	V	G G	G	UU		fl fl			
Hydraulic oils H, HL, HLP Hydrazine	N ₂ H ₄		-	< 60 < Kp	D	53A		1	$Q_1(S)$ $Q_1(S)$	B	E	G	G	T,C,R45,N	*	fl	2	113	1,011
Hydroiodic acid	H		-	<Кр	D	53A		1	Q ₁	Q ₁	 M ₁	G	G	C,2		fl	_	127(A)	1,7 (A57%)
Hydrobromic acid solution	HBr		-	<Кр	D	53A	SW	1	Q ₁	Q ₁	M ₁	G	G	C,Xi,2,6		fl		126	1,5
Hydrochloric acid	нсі нсі нсі нсі нсі нсі нсі		0,04 <2 <10 <35 -	<20 <65 <25 <20 <80	S,Q S,Q S,Q D	62 62 62 62 53A		1 1 1 1	Q ₁ (V) Q ₁ (V) Q ₁ (V) Q ₁ (V) Q ₁ (V)	B B B B	V V V V V	G M M M	G M M M	Xi,2 Xi,2 Xi,2 C,2 C,2 C,2	#7 #7 #7 #7 #7	fl fl fl fl fl		5%~101 10%~103 20%~110 25%~107 30%~95 35%~80 40%~20	10,5% 1,05 20,4% 1,10 24,3% 1,12 28,2% 1,14 32,1% 1,16 36,2% 1,18 40,4% 1,20
Hydrocyanic acid	HCN	TA	-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>E</td><td>G</td><td>G</td><td>T+,F+,N</td><td>10</td><td>fl</td><td>-14</td><td>26</td><td>0,687</td></kp<>	D	53A		1	$Q_1(V)$	В	E	G	G	T+,F+,N	10	fl	-14	26	0,687
Hydrofluoric acid	HF HF HF HF		<40 <20 - -	<20 <30 <10 <kp< td=""><td>S,Q S,Q S,Q D</td><td>62 62 62 54</td><td></td><td>1 1 1</td><td>Q₁ Q₁ Q₁ Q₁</td><td>B B Q₁</td><td>M₁ M₁ M₁ M₁</td><td>M M G</td><td>M M G</td><td>T+,C T+,C T+,C T+,C,2</td><td>3 3 3 3</td><td>fl fl fl fl</td><td></td><td>112(A) 20%103 60%80 100%20</td><td>1,13 A38</td></kp<>	S,Q S,Q S,Q D	62 62 62 54		1 1 1	Q ₁ Q ₁ Q ₁ Q ₁	B B Q ₁	M ₁ M ₁ M ₁ M ₁	M M G	M M G	T+,C T+,C T+,C T+,C,2	3 3 3 3	fl fl fl fl		112(A) 20%103 60%80 100%20	1,13 A38
Hydrofluosilicic acid → Fluorosilicic acid					_					_									
Hydrogen Hydrogen chloride anhydrous	H ₂ HCI		-	<60 <60	D	53A 54		1	$Q_1(S)$ $Q_1(V)$	B	E M ₁	G G	G	F+,1 T,C,1,2,3	5	ga ga	-259 -114	-252 -85	(-) (+)
Hydrogen fluoride (gas)	HF		-	<60	D	54		1	Q ₁	B	M ₂	G	G	T+,C,1,2	3	ga	-83	19	(+)
Hydrogen iodide anhydrous	HI		-	>-20	D	53A		1	Q ₁	Q_1	M ₁	G	G	C, 1		ga	-51	-35	(+)
Hydrogen peroxide	H ₂ O ₂ H ₂ O ₂		<90 <60	<kp <60</kp 	D S	53A 11		1	Q ₁ Q1	Q ₁ Q1	M ₁ V	G G	G	Xn,C,O,1	1	fl	0	150	1,4467
Hydrogen phosphide (Phosphine)	PH3		-	<60	D	53A		1	Q ₁ (V)	В	M ₁	G	G	T+,1,F+,N	0,1	ga	-133	-87	(+)
Hydrogen sulfide Hydroxymethyl propionitril	H ₂ S		-	<100	D	62		1	Q ₁ (V)	В	M ₂	G	G	T+,1,F+,N	10	ga	-85	-60	(+)
→ Acetone cyanohydrin Hypochlorous acid	HOCI		-	<40	D	53A		1	Q ₁ (V)	В	V	G	G			fl			
I																			
Ice cream Insecticides		N	-		S	01		1	$Q_1(S)$	В	V	G	G			pa			
(Aqueous solution)		S	<l< td=""><td><kp< td=""><td>S,Q</td><td>62</td><td>QW</td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>٧</td><td>G</td><td>G</td><td>6,U</td><td></td><td></td><td></td><td></td><td></td></kp<></td></l<>	<kp< td=""><td>S,Q</td><td>62</td><td>QW</td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>٧</td><td>G</td><td>G</td><td>6,U</td><td></td><td></td><td></td><td></td><td></td></kp<>	S,Q	62	QW	1	$Q_1(S)$	В	٧	G	G	6,U					
Insulating lacquers		S	Sch	<200	D	53A		1	Q ₁ (S)	A	M ₁	G	G	3,4	0.1	fe	114	104	4.00
lodine Iodoform (Triiodomethane)	CHI ₃		Sch Sch	<kp <200</kp 	D	53A 53A		1	Q ₁ Q ₁	Q ₁ Q ₁	M ₁ M ₁	G G	G	Xn,4,6,N Xn,4,6	0,1	fe fe	114 119	184 ~218	4,93 4,008
Iron chlorides	ong																110	210	1,000
(FeCl ₂ or FeCl ₃)			<15 <l< td=""><td><25 <Кр</td><td>S D</td><td>11 11</td><td></td><td>1</td><td>Q₁ Q₁(V)</td><td>Q₁ B</td><td>E</td><td>M G</td><td>M G</td><td>Xn Xn</td><td></td><td>kr kr</td><td></td><td></td><td></td></l<>	<25 <Кр	S D	11 11		1	Q ₁ Q ₁ (V)	Q ₁ B	E	M G	M G	Xn Xn		kr kr			
Iron sulfates: Iron (II) sulfate (Ferrous sulfate, Iron vitriol)	FeSO ₄		<l< td=""><td><80</td><td>S</td><td>11</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>v</td><td>G</td><td>G</td><td>Xn</td><td></td><td>kr</td><td>>400(Z)</td><td></td><td></td></l<>	<80	S	11		5	Q ₁	Q ₁	v	G	G	Xn		kr	>400(Z)		
Iron (III) sulfate (Ferric sulfate)	Fe ₂ (SO ₄) ₃		<l< td=""><td>< 80</td><td>S</td><td>11</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>v</td><td>G</td><td>G</td><td>Xn</td><td></td><td>kr</td><td>480(Z)</td><td></td><td>3,1</td></l<>	< 80	S	11		5	Q ₁	Q ₁	v	G	G	Xn		kr	480(Z)		3,1
lso also see →										-1							()		-,.
Isoborneol (2-Exo-bornanol) Isobutyl acetate	C ₁₀ H ₁₈ O		<l< td=""><td><Кр</td><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(S)</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xi</td><td></td><td>fe</td><td>212(Z)</td><td></td><td></td></l<>	<Кр	S	11		1	Q ₁ (S)	В	M ₁	G	G	Xi		fe	212(Z)		
→ Acetic acid esters Isocyanates		S	Sch	<200	D	53A		1	Q ₁ (V)	В	M ₁	G	G	U					
lsooctane (2,2,4-Trimethylpentane)	C ₈ H ₁₈	TA	-	<40	S	11		1	Q ₁ (S)	В	v	G	G	Xn,Xi,F,N		fl	-110	117	0,692
Isooctanol (2-Ethyl-1-hexanol) \rightarrow 2-Ethyl hexanol)																			
Isopentane → Pentanes Isophorone (3,5,5-Trimethylcyclohex- 2-enone)	C ₉ H ₁₄ O	TA		<40	S,Q	62		1	Q ₁ (S)	В	E	G	G	Xn,Xi,R40	5	fl	-8	215	0,92
Isopropanol $\rightarrow 2$ -Propanol	ugii140	A		×40	3,4	02			u1(0)	U	Ľ	u	u	Λιι,Λι,η40	J	11	-0	ZIJ	0,92
$IsopropyI \ \ {} \rightarrow PropyI \$																			
		1																	

Media Code of materials and legend see inside of	Chemical formula	Remark	ition %	Temp. °C	Arrange- ment	Auxil. piping		Seal type 2	nanical	Ma	aterials N 127			Addii Hazard warnings	tional ir TLV- value	<u>e</u>	tion on the me Melting temperature	Boiling point	Density g/cm ³
back cover. Please observe the note on page 1.			Concentration %			Auxil.	Addit. measures	Se	Seal face	Seal face N	Sec. seal 🗠	Spring 4	Others G			Normal co	°C	°C	
1		2	3	4	5	6	7	8	š	Š	Š			10	11	12	13	14	15
Isopropyl alcohol → 2-Propanol																			
Isopropyl methylbenzene → Cymene																			
Isopropylbenzene \rightarrow <i>Cumene</i>																			
J			1																
Jams, marmalades Jet fuel IP4, IP5		G	-	<100 <40	S S	11		1	$Q_1(V)$ $Q_1(S)$	B B	V V	G	G	F		pa fl		100280	0,750,84
	1	1 4	1	. 10		1		1.	u (o)	5			1 3	· ·				1 100200	
K Kaurit → <i>Glues</i>																			
Kerosene			-	<100	S	11		1	$Q_1(S)$	В	V	G	G	Xn		fl		175325	~0,8
Ketchup Krypton	Kr	N	-	<80 <160	S,Q D	62 53A		1	$Q_1(V)$ $Q_1(S)$	B B	E M1	G	G	3		fl ga	-157	-154	(+)
·····		1	1	1		1 30/1	1		1-1(0)		I1			ı [,]	1	1 94		1 .01	1 1.7
L Lacquer solvents		S	-	< Kp	S	11		1	Q ₁ (S)	В	M ₁	G	G	U		fl			
Lacquers		S	-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>B</td><td>M₁</td><td>G</td><td>G</td><td>3,4</td><td></td><td>fl</td><td></td><td></td><td></td></kp<>	D	53A		1	$Q_1(V)$	B	M ₁	G	G	3,4		fl			
Lactic acid	C ₃ H ₆ O ₃		<l< td=""><td><80</td><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(S)</td><td>В</td><td>V</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td>53</td><td></td><td>1,206</td></l<>	<80	S	11		1	Q ₁ (S)	В	V	G	G	Xi		kr	53		1,206
Lactose (milk sugar)	C ₁₂ H ₂₂ O ₁₁		<l< td=""><td><Кр</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td></td><td></td><td></td><td>000</td><td></td><td>4 505</td></l<>	<Кр	S	11		1	$Q_1(V)$	В	V	G	G				000		4 505
Lard	C ₁₂ H ₂₂ O ₁₁	N	<20 Sch	<kp <100</kp 	S S	11		5	Q_1 $Q_1(S)$	Q ₁ B	V V	G	G			kr pa	223 3642		1,525
Latex			0011														0012		
(specification necessary)		N	-	<100	S,Q	53A		X		Q ₁ (V)	M	G	G	3,4		fl		004	0.00 0.00
Lavender oil Lead (II) acetate (lead sugar)	(CH ₃ COO) ₂ Pb	TA,N TA	- <	<kp <100</kp 	S S	11		1	$Q_1(S)$ $Q_1(S)$	B B	V E	G	G	Xi,T T,Xn,R62,N		fl kr	75	204 ~200(Z)	0,880,90 2,5
Lead sugar → Lead (II) acetate	(0113000)21 0			100	0					U	-	u	u	1,711,1102,11		N.	10	200(2)	2,0
Lecithine		N	-	<100	S	11		1	$Q_1(S)$	В	M ₁	G	G			ра	~200(Z)		
Lemonade syrup			-	<60	S	11		1	$Q_1(V)$	В	V	G	G			fl			
Lemonades			-	<60	S	11		1	$Q_1(S)$	B	V	G	G			fl ,			
Lignosulfonic acid Lignite tar		N,	<l< td=""><td><100 <140</td><td>D S</td><td>11</td><td>(H)</td><td>1</td><td>$Q_1(V)$ $Q_1(S)$</td><td>B</td><td>M₁</td><td>G</td><td>G</td><td>4 T,R45</td><td></td><td>fe pa</td><td></td><td>250 350</td><td>0,85 1,0</td></l<>	<100 <140	D S	11	(H)	1	$Q_1(V)$ $Q_1(S)$	B	M ₁	G	G	4 T,R45		fe pa		250 350	0,85 1,0
Lighto tar		TA	-	<200	S	11	(H)	1	$Q_1(S)$	Α	M1	G	G	1,110		pu		200 000	0,00 1,0
Lime water	Ca(OH) ₂ Ca(OH) ₂		<10	<80 <80	S,Q S	62 02	QW kD	2 3	Q ₁₂ Q ₁	Q ₁₂ Q ₁	V V	G	G	Xi,6 Xi,6					
(Ca(OH) ₂ +H ₂ O) Lime powder suspension	CaCO ₃		<10	<80	S	11	kD	5	Q,	Q,	v	G	G	71,0		kr	825(Z)		2,95
(Calcium carbonate)	CaCO ₃ CaCO ₃		<10 <50	<80 <80	S,Q S	62 02	QW kD	2	Q ₁₂ Q ₁	Q ₁₂	V V	G G	G	6					
Linseed oil	00003	N	-	<60	S	11	κD	1	$Q_1(S)$	Q ₁ B	V	G	G			fl			0,920,94
Linters		N	Sus	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>V</td><td>G</td><td>G</td><td></td><td></td><td>fe</td><td></td><td></td><td></td></kp<>	D	53A		1	Q ₁ (V)	В	V	G	G			fe			
Liquefied gases acc. to DIN 51622		G	_	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>Q₁₂</td><td>A</td><td>v</td><td>G</td><td>G</td><td>F</td><td></td><td>ga</td><td></td><td></td><td></td></kp<>	S	11		1	Q ₁₂	A	v	G	G	F		ga			
Liqueurs, liqueur wines			-	<60	S	11		1	$Q_1(S)$	В	v	G	G			fl			
Liquid → , <i>liquid</i>																			
Liquor → <i>Ethanol</i> Liquorice		N		~ Kn	D	53A		1	0 (0)	В	v	G	G	4					
Liquorice Lithium bromide	LiBr	N	- <l< td=""><td><kp <40</kp </td><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(S) Q₁</td><td>B</td><td>v v</td><td>G</td><td>G</td><td>4 Xn</td><td></td><td>pa kr</td><td>547</td><td>1265</td><td>3,465</td></l<>	<kp <40</kp 	S	11		1	Q ₁ (S) Q ₁	B	v v	G	G	4 Xn		pa kr	547	1265	3,465
Lithium chloride	LiCI		<l< td=""><td><20</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>Xn</td><td></td><td>kr</td><td>613</td><td>1360</td><td>2,068</td></l<>	<20	S	11		1	$Q_1(V)$	В	V	G	G	Xn		kr	613	1360	2,068
Liver sausage mass	LiCl		<l< td=""><td><kp <60</kp </td><td>DS</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$ $Q_1(S)$</td><td>B B</td><td>M₁</td><td>G G</td><td>G</td><td>Xn,2</td><td></td><td>ра</td><td></td><td></td><td></td></l<>	<kp <60</kp 	DS	53A		1	$Q_1(V)$ $Q_1(S)$	B B	M ₁	G G	G	Xn,2		ра			
Lubrication oils		S	-	>F<140	S	11		1	$Q_1(S)$	B	V	G	G	U		fl			
Lysoform = 7,7-%																			
→ Formaldehyde Lysol		R	-	<60	S	11		1	Q ₁ (V)	В	v	G	G			fl			
2,001				- 00	0	1		1 1	[u] (v)	0		l	l u			1 1			
M m, meta →																			

Μ																
m, meta →																
Magnesium bisulfite → Magnesium hydrogen sulfite																
Magnesium chloride	MgCl ₂ MgCl ₂	<30 <l< td=""><td><20 <80</td><td>S S</td><td>11 11</td><td></td><td>$Q_1(V)$ $Q_1(V)$</td><td>B B</td><td>V V</td><td>G M</td><td>G M</td><td></td><td>kr</td><td>708</td><td>1412</td><td>2,312,33</td></l<>	<20 <80	S S	11 11		$Q_1(V)$ $Q_1(V)$	B B	V V	G M	G M		kr	708	1412	2,312,33
Magnesium hydrogen sulfite		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td></td><td>kr</td><td></td><td></td><td></td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td></td><td>kr</td><td></td><td></td><td></td></kp<>	D	53A	1	$Q_1(V)$	В	M ₁	G	G		kr			

Media	_					-	-	Mech	anical	Seal	-	-		libbA	ional in	forma	ation on the me	dium	_
Code of materials and legend see inside of back cover.	Chemical formula	Remark	Concentration %	Temp. °C	Arrange- ment	Auxil. piping	Addit. measures	Seal type		Ma	aterials N 127			Hazard warnings	TLV- value	Normal condition	Melting temperature °C	Boiling point °C	Density g/cm ³
Please observe the note on page 1.			ncenti			Auxi	ddit. m	S	1	2	3	4	5			ırmal c			
			ŭ				A		Seal face	Seal face	Sec. seal	Spring	Others			No			
1		2	3	4	5	6	7	8						10	11	12	13	14	15
Magnesium hydroxide	Mg(OH) ₂ Mg(OH) ₂ Mg(OH) ₂		<10 <20 <40	<25 <40 <80	S S D	11 11 53A		1 1 1	U ₁ Q ₁ Q ₁	U ₁ Q ₁ Q ₁	E E E	G G G	G G G			kr			2,36
Magnesium nitrate	$Mg(NO_3)_2^*{}_6H_2O$		<l< td=""><td><25</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>0</td><td></td><td>fe</td><td>89</td><td></td><td>1,64</td></l<>	<25	S	11		1	$Q_1(V)$	В	M ₁	G	G	0		fe	89		1,64
Magnesium sulfate	MgSO ₄		<l< td=""><td><kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>B</td><td>V</td><td>G</td><td>G</td><td>V-V:</td><td></td><td>kr</td><td>1124</td><td>100/7)</td><td>2,66</td></kp<></td></l<>	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>B</td><td>V</td><td>G</td><td>G</td><td>V-V:</td><td></td><td>kr</td><td>1124</td><td>100/7)</td><td>2,66</td></kp<>	S	11		1	$Q_1(V)$	B	V	G	G	V-V:		kr	1124	100/7)	2,66
Maleic acid Malic acid	C ₄ H ₄ O ₄		<l< td=""><td><100</td><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>V</td><td>G</td><td>G</td><td>Xn,Xi</td><td></td><td>kr</td><td>140</td><td>160(Z)</td><td>1,590</td></l<>	<100	S	11		1	Q ₁ (V)	В	V	G	G	Xn,Xi		kr	140	160(Z)	1,590
(Hydroxysuccinic acid)	$C_4H_6O_5$		<l< td=""><td><60>K</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>E</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td>132</td><td></td><td>1,6</td></l<>	<60>K	S	11		1	$Q_1(S)$	В	E	G	G	Xi		kr	132		1,6
Malonic acid	$C_3H_4O_4$		<l< td=""><td><60</td><td>S</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>Xn</td><td></td><td>kr</td><td>135</td><td></td><td>1,62</td></l<>	<60	S	53A		1	$Q_1(V)$	В	M ₂	G	G	Xn		kr	135		1,62
Manganese(II)-chloride	MnCl* ₄ H ₂ O		<l< td=""><td><Кр</td><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn,2</td><td></td><td>kr</td><td>58</td><td></td><td>2,01</td></l<>	<Кр	D	53A		1	$Q_1(V)$	В	M ₁	G	G	Xn,2		kr	58		2,01
Manganese(II)-nitrate Manganese sulfates:	$Mn(NO_3)_2*_6H_2O$		<l< td=""><td><kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>E</td><td>G</td><td>G</td><td>0</td><td></td><td>kr</td><td>37</td><td>129</td><td>2,13</td></kp<></td></l<>	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>E</td><td>G</td><td>G</td><td>0</td><td></td><td>kr</td><td>37</td><td>129</td><td>2,13</td></kp<>	S	11		1	Q ₁ (V)	В	E	G	G	0		kr	37	129	2,13
Manganese sunates. Manganese(II)-sulfate Manganese(IV)-sulfate Manganese(IV)-sulfate	$\begin{array}{c} MnSO_4\\ Mn_2(SO_4)_3\\ Mn(SO_4)_2 \end{array}$		<l <l <l< td=""><td><60 <60 <60</td><td>S S S</td><td>11 11 11</td><td></td><td>1 1 1</td><td>$\begin{array}{l} Q_1(V) \\ Q_1(V) \\ Q_1(V) \end{array}$</td><td>B B B</td><td>M₁ M₁ M₁</td><td>G G G</td><td>G G G</td><td>Xn,N U U</td><td></td><td>fe kr kr</td><td>700 160(Z)</td><td>850(Z)</td><td>3,25</td></l<></l </l 	<60 <60 <60	S S S	11 11 11		1 1 1	$ \begin{array}{l} Q_1(V) \\ Q_1(V) \\ Q_1(V) \end{array} $	B B B	M ₁ M ₁ M ₁	G G G	G G G	Xn,N U U		fe kr kr	700 160(Z)	850(Z)	3,25
Manure, liquid		N	-	<60	S	11		1	Q ₁	Q_1	Р	G	G			fl			
Marlotherm → Heat transfer oils Mashes:		®																	
Fruit mash Fruit pulp Hop mash			Sus Sus Sus	<Кр <Кр <Кр	S S S	11 11 11		1 1 1	$\begin{array}{c} \mathbb{Q}_1(S)\\ \mathbb{Q}_1(S)\\ \mathbb{Q}_1(S)\end{array}$	B B B	V V V	G G G	G G G			fl fl fl			
Mustard mash Potato mash Salt mash			Sus Sus <l< td=""><td><Кр <Кр <Кр</td><td>S S S,Q</td><td>11 11 62</td><td></td><td>1 1 4</td><td>Q₁(V) Q₁(S) Q₁</td><td>B B Q₁</td><td>V V V</td><td>G G M</td><td>G G M</td><td>2,4,6</td><td></td><td>fl fl fl</td><td></td><td></td><td></td></l<>	<Кр <Кр <Кр	S S S,Q	11 11 62		1 1 4	Q ₁ (V) Q ₁ (S) Q ₁	B B Q ₁	V V V	G G M	G G M	2,4,6		fl fl fl			
Masut				<100 <200	S S	11 11		1 1	$Q_1(S) \\ Q_1(S)$	B A	V M ₁	G G	G G	U U		fl fl			
Mayonnaise MDEA			-	<40	S	11		1	Q ₁ (V)	В	V	G	G			ра			
→ N-Methyl-2,2'- iminodiethanol																			
MEA → N-Methyl ethanolamine																			
Meat juice, meat broth MEK \rightarrow <i>Butanone</i>		N	-	<60	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Melamine resins Mercaptanes \rightarrow Thiols		S	-	<100	D	53A		1	Q ₁ (V)	В	M ₁	G	G	U,3,4		fl			
Mercuric chlorides: Mercuric chloride Mercurous chloride	HgCl ₂		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>v</td><td>G</td><td>G</td><td>T+,C,2,N</td><td></td><td>kr</td><td>280</td><td>302</td><td>5,44</td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>v</td><td>G</td><td>G</td><td>T+,C,2,N</td><td></td><td>kr</td><td>280</td><td>302</td><td>5,44</td></kp<>	D	53A		1	Q ₁ (V)	В	v	G	G	T+,C,2,N		kr	280	302	5,44
(Calomel)	Hg ₂ Cl ₂		<l< td=""><td><100</td><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>Xn,Xi,2,N</td><td></td><td>kr</td><td></td><td>385(S)</td><td>7,15</td></l<>	<100	D	53A		1	$Q_1(V)$	В	V	G	G	Xn,Xi,2,N		kr		385(S)	7,15
Mercury	Hg		- <l< td=""><td><60</td><td>D S,Q</td><td>53A</td><td></td><td>1</td><td>$Q_1(S)$</td><td>B</td><td>V V</td><td>G</td><td>G</td><td>T,4,6,N T+,N</td><td>0,01</td><td>fl</td><td>-38</td><td>356</td><td>13,5939</td></l<>	<60	D S,Q	53A		1	$Q_1(S)$	B	V V	G	G	T,4,6,N T+,N	0,01	fl	-38	356	13,5939
Mercury (I) nitrate Mesityl oxide	Hg ₂ (NO ₃) ₂ C ₆ H ₁₀ O		-	<Кр <Кр	D J	62 53A		1	$Q_1(V)$ $Q_1(S)$	B	M ₁	G	G G	Xn,3	25	kr fl	-59	70(Z) 130	0,854
Metal working lubricants: for finishing machines for other machine tools	0 10		-	<80 <80	D	53A 11		5 5		Q ₁ Q ₁	VV	G	G	UUU		fl fl			
Methacrylic acid methylester (Methyl methacrylate)	C ₅ H ₈ O ₂	TA	-	<Кр	D	53A		1	Q ₁ (V)	B	М2	G	G	Xi,F	50	fl	-48	100	0,944
Methanal → <i>Formaldehyde</i> Methane	CH ₄		-	<60	D	53A		1	U ₂	А	v	G	G	F+,1		ga	-182	-161	(-)
Methanol (Methyl alcohol)	CH ₃ OH	TA	-	<60	S,Q	62		1	$Q_1(S)$	B	E	G	G	F,T	200	ya fl	-182	64	0,787
Methyl acetate → Acetic acid methyl ester					-,-				-1(-)					.,.					-,
Methyl acrylate (Acrylic acid methyl ester) Methyl alcohol → <i>Methanol</i>	C ₄ H ₆ O ₂	TA	-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>Xn,Xi,F</td><td>5</td><td>fl</td><td>-75</td><td>80</td><td>0,954</td></kp<>	D	53A		1	Q ₁ (V)	В	M ₂	G	G	Xn,Xi,F	5	fl	-75	80	0,954
Methyl bromide (Bromomethane)	CH ₃ Br	TA	_	<60	D	53A		1	$Q_1(V)$	В	M ₁	G	G	T,Xn,Xi,1,2,N	5	ga	-94	4	(+)
3-Methylbutan-2-one (Methyl isopropyl ketone) Methyl butyrate	C ₅ H ₁₀ O	TA	-	<Кр	S,Q	62		1	Q ₁ (V)	В	M ₂	G	G	F		fl	-92	95	0,80
→ Butyric acid esters Methyl cellosolve																			
→ Ethylene glycol		ТА		00	n	694		1	0.00	D	M	C	0	Yo D 40 E -	50		07	05	(1)
Methyl chloride Methyl chloroform \rightarrow 1,1,1-Trichloroethane	CH ₃ CI	TA	-	<80	D	53A		1	Q ₁ (V)	В	M ₁	G	G	Xn,R40,F+	50	ga	-97	-25	(+)
Methyl cyclohexanone, mixture of isomers	C7H120		-	<Кр	S,Q	62		1	Q ₁ (S)	В	M ₂	G	G	Xn	50	fl	-7314	165170	0,920,93

Media								Mech	anical	Seal				Addit	ional in	forma	ation on the me	dium	
Code of materials and legend see inside of back cover.	Chemical formula	Remark	Concentration %	Temp. °C	Arrange- ment	Auxil. piping	Addit. measures	Seal type			aterials N 127			Hazard warnings	TLV- value	condition	Melting temperature °C	Boiling point °C	Density g/cm ³
Please observe the note on page 1.			oncent			Auxi	ddit. n	00	1	2	3	4	5			Normal c			
1		2	3	4	5	6	× 7	8	Seal face	Seal face	Sec. seal	Spring	Others	10	11	12	13	14	15
Methylene chloride	CH ₂ Cl ₂	TA	-	<80	D	53A		1	$Q_1(V)$	В	M ₁	G	G	Xn,R40,1,3,4	100	fl	-96	40	1,325
Methyl ethanolamine, N-	C ₃ H ₉ NO		-	Кр	S,Q	62		1	Q ₁	В	M ₂	G	G	Xn,C		fl	-3	158	0,937
Methyl ethyl ketone → Butanone																			
Methyl formiate → Formic acid methyl ester																			
Methyl-2,2'-imino-diethanol, N (N-methyldiethanolamine)	C ₅ H ₁₃ NO ₂		-	<180	S,Q	62		1	Q ₁	В	M ₂	G	G	Xi		fl	-21	243	1,04
Methyl isobutyl ketone (MIBK) \rightarrow 4-Methylpentan-2-one																			
Methyl isopropyl ketone → 3-Methylbutan-2-one																			
Methyl methacrylate (MMA) → Methacrylic acid methyl ester																			
Methylnaphthalenes: 1-Methylnaphthalene 2-Methylnaphthalene	C ₁₁ H ₁₀ C ₁₁ H ₁₀	TA TA	_ Sch	<160 <160	S S	11 11	(H)	1	Q ₁ (S) Q ₁ (S)	B B	M ₁ M₁	G G	G	Xn,N Xn.N		fl kr	-30 35	245 241	1,020 1,005
4-Methylpentan-2-one	C ₆ H ₁₂ O	TA	-	<100	S	11	()	1	Q ₁	В	M ₂	G	G	Xn,Xi,F	100	fl	-80	117	0,80
Methyl pyrrolidone, N- (1-Methyl-2-pyrrolidinone, NMP)	C ₅ H ₉ NO		_	<100	S	11		1	Q ₁	В	M ₂	G	G	Xi	20	fl	-24	206	1,028
Milk		N	-	<40	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Milk sugar → <i>Lactose</i>																			
Mineral oils		S	-	<80	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Miscella			-	<60	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Mobiltherm → Heat transfer oils		®																	
Molasse			-	<100	S,Q	62		1	Q ₁₂	Q_{12}	V	G	G	3,4		fl			
Mono →																			
Monoethanolamine → 2-Aminoethanol																			
Mud			Sus	<40	S,Q	62	kD	3	Q ₂	Q_2	V	М	G			fl			
Mustard			-	<60	S,Q	62		1	Q ₁	Q_1	V	G	G			ра			
Mustard mash \rightarrow Mashes																			

N																			
Naphtha		TA,G	-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>T,R45,F,N</td><td></td><td>fl</td><td></td><td>30>200</td><td></td></kp<>	S	11		1	$Q_1(S)$	В	M ₁	G	G	T,R45,F,N		fl		30>200	
Naphthalene	C ₁₀ H ₈	TA	Sch	<kp< td=""><td>S,Q</td><td>62</td><td>(H)</td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn,R40,N</td><td>10</td><td>kr</td><td>81</td><td>218</td><td>1,14</td></kp<>	S,Q	62	(H)	1	$Q_1(S)$	В	M ₁	G	G	Xn,R40,N	10	kr	81	218	1,14
Naphthenic acids		G	-	<60	S	11		1	$Q_1(V)$	В	V	G	G	Xi		fl	~30	132243	0,941,03
Naphthol dyes		G	<l< td=""><td><140</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>U</td><td></td><td>kr</td><td></td><td></td><td></td></l<>	<140	S	11		1	$Q_1(V)$	В	V	G	G	U		kr			
Naphthylamines: 1-Naphthylamine 2-Naphthylamine	C ₁₀ H ₉ N C ₁₀ H ₉ N	TA TA	Sch <l< td=""><td><150 <kp< td=""><td>S D</td><td>11 53A</td><td>(H)</td><td>1 1</td><td>Q₁(V) Q₁(V)</td><td>B B</td><td>M₂ M₂</td><td>G G</td><td>G G</td><td>Xn,N T,Xn,R45,N</td><td>*</td><td>kr kr</td><td>50 110</td><td>301 306</td><td>1,13 1,216</td></kp<></td></l<>	<150 <kp< td=""><td>S D</td><td>11 53A</td><td>(H)</td><td>1 1</td><td>Q₁(V) Q₁(V)</td><td>B B</td><td>M₂ M₂</td><td>G G</td><td>G G</td><td>Xn,N T,Xn,R45,N</td><td>*</td><td>kr kr</td><td>50 110</td><td>301 306</td><td>1,13 1,216</td></kp<>	S D	11 53A	(H)	1 1	Q ₁ (V) Q ₁ (V)	B B	M ₂ M ₂	G G	G G	Xn,N T,Xn,R45,N	*	kr kr	50 110	301 306	1,13 1,216
Natural gas			-	<60	D	53A		1	$Q_1(S)$	А	V	G	G	1,F		ga			
Neon	Ne		-	<80	D	53A		1	$Q_1(S)$	В	N	G	G	1		ga	-248	-247	(-)
Neopentane (2,2-Dimethylpropane) → Pentanes																			
NFM → n-FormyImorpholine																			
Nickel (II) chloride	NiCl		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>T,R45,2,N</td><td></td><td>kr</td><td>1030</td><td></td><td>3,55</td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>T,R45,2,N</td><td></td><td>kr</td><td>1030</td><td></td><td>3,55</td></kp<>	D	53A		1	$Q_1(V)$	В	M ₁	G	G	T,R45,2,N		kr	1030		3,55
Nickel (II) sulfate	NiSO ₄		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn,R40,N</td><td></td><td>kr</td><td>>840(Z)</td><td></td><td>3,68</td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn,R40,N</td><td></td><td>kr</td><td>>840(Z)</td><td></td><td>3,68</td></kp<>	D	53A		1	$Q_1(V)$	В	M ₁	G	G	Xn,R40,N		kr	>840(Z)		3,68
Nitrating acid		G	-	<80	D	53A		1	$Q_1(V)$	В	M ₁	G	G	C,2,0		fl			
Nitric acid	HNO ₃ HNO ₃ HNO ₃ HNO ₃ HNO ₃ HNO ₃ HNO ₃		<40 <30 <50 <60 <70 <80 <90	<20 <90 <80 <70 <60 <50 <30	S,Q S,Q S,Q S,Q S,Q S,Q S,Q	62 62 62 62 62 62 62 62 62	QW QW QW QW QW QW	1 1 1 1 1 1	$\begin{array}{c} {\tt Q}_1({\tt V}) \\ {\tt Q}_1 \end{array}$	$B \\ Q_1	M ₁ M ₁ M ₁ M ₁ M ₁ M ₁	G G G M M	G G G M M M	C C C C C C C C	2 2 2 2 2 2 2 2 2	fl fl fl fl fl fl fl	10%-6 20%-18 30%-36 40%-28 50%-19 60%-21 70%-41	10% 102 20% 104 30% 107 40% 111 50% 115 60% 118 70% 120	10% 1,054 20% 1,115 30% 1,180 40% 1,246 50% 1,310 60% 1,367 70% 1,413
Nitric acid, fuming	HNO_3 HNO_3 HNO_3		>90	<120	D	53A	SW	1	Q ₁	Q ₁	M ₁	М	М	C,O,2	2	fl	80%-38 90%-65 100%-41	80% 113 90% 96 100% 83	80% 1,452 90% 1,483 100% 1,513
Nitrobenzene	C ₆ H ₅ NO ₂	TA	-	<80	D	53A		1	$Q_1(V)$	В	M ₁	G	G	T,R40,R62,N	1	fl	56	211	1,19867
Nitrochloroform → Trichloronitromethane																			
Nitrogen	N ₂		-	<100	D	53A		1	$Q_1(S)$	В	E	G	G	1		ga	-210	-196	(-)
Nitroglycerine	$CH_5(NO_3)_3$	TA	-	<60	D	53A		1	Q ₁ (S)	В	E	G	G	T+,E,N	0,05	fl	14		1,59

Media								Mech	anical	Seal				Addit	ional in	forma	ition on the me	dium	
Code of materials and legend see inside of back cover.	Chemical formula	Remark	Concentration %	Temp. °C	Arrange- ment	Auxil. piping	measures	Seal type			iterials N 127			Hazard warnings	TLV- value	condition	Melting temperature °C	Boiling point °C	Density g/cm ³
Please observe the note on page 1.			ncen			Au	Addit.		1	2	3	4	5			Normal			
1		2	0) 3	4	5	6	7	8	Seal face	Seal face	Sec. seal	Spring	Others	10	11	ōN 12	13	14	15
Nitromethane	CH ₃ NO ₂	TA	-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn</td><td></td><td>fl</td><td>-29</td><td>101</td><td>1,13</td></kp<>	D	53A		1	$Q_1(V)$	В	M ₁	G	G	Xn		fl	-29	101	1,13
Nitrosylsulfuric acid	NOHSO ₄		<l< td=""><td><80</td><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>С,О</td><td></td><td>kr</td><td>73(Z)</td><td></td><td></td></l<>	<80	D	53A		1	$Q_1(V)$	В	M ₁	G	G	С,О		kr	73(Z)		
$NMP \rightarrow N-Methyl pyrrolidone$																			
4-Nonylphenol	C ₁₅ H ₂₄ O	TA	Sch	<220	S,Q	01	(H)	6	Α	$Q_1(S)$	M ₇	T ₆	G ₁	C,N		ра	2	295304	0,95

0																			
o, ortho \rightarrow																			
Octane	C ₈ H ₁₈	TA	-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>Xn,Xi,F,N</td><td>500</td><td>fl</td><td>-57</td><td>126</td><td>0,703</td></kp<>	S	11		1	$Q_1(S)$	В	V	G	G	Xn,Xi,F,N	500	fl	-57	126	0,703
4-Octylphenol	C ₁₄ H ₂₂ O	TA	Sch	<220	S,Q	01	(H)	6	Α	Q_1	U ₁	M ₆	G ₁	C,N		fe	~80	277	0,95
Oil lacquer paints		G	-	<40	D	53A		1	$Q_1(S)$	В	M ₁	G	G	U,3,4		fl			
Oils (not specified)		S	-	<100	S	11		1	$Q_1(S)$	В	V	G	G	U		fl			
Oleic acid			-	<z< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>3</td><td></td><td>fl</td><td>16</td><td>360</td><td>0,8935</td></z<>	S,Q	62		1	$Q_1(S)$	В	M ₁	G	G	3		fl	16	360	0,8935
Oleum → Sulfuric acid, fuming																			
Olive oil		Ν	-	<100	S	11		1	$Q_1(S)$	В	V	G	G			fl	~6		0,910,92
Oxalic acid (Ethanedioic acid)	$C_2H_2O_4$ $C_2H_2O_4$	TA TA	<l <l< td=""><td><kp <25</kp </td><td>S,Q S,Q</td><td>62 62</td><td></td><td>1</td><td>$Q_1(V)$ $Q_1(V)$</td><td>B B</td><td>V E</td><td>M G</td><td>M M</td><td>Xn Xn</td><td></td><td>kr</td><td></td><td>>100(S)</td><td>1,901(25)</td></l<></l 	<kp <25</kp 	S,Q S,Q	62 62		1	$Q_1(V)$ $Q_1(V)$	B B	V E	M G	M M	Xn Xn		kr		>100(S)	1,901(25)
2-Oxazolidinone (2-Oxazolidone)	C ₃ H ₅ NO ₂	TA	Sch	<200	D	53A	(H)	1	Q ₁	Q ₁	M ₁	G	G	Xn,3,4,R40		kr	8589	220(64)	
Ozone	03		-	<40	D	53A		1	Q ₁	Q_1	K ₁₃	G	G	T+,C,1,0	0,1	ga	-192	-112	(+)

P																			
p, para →																			
Palatal		®,G	-	<60	S,Q	62		1	$Q_1(S)$	В	V	G	G	U,3		fl			
Palatinol®																			
→ Phthalic acid esters:																			
Palatinol A (DEP)																			
Palatinol AH (DOP) Palatinol C (DBP)																			
Palatinol C (DBP) Palatinol M (DMP)																			
Palatinol N (DINP)																			
Palatinol O (DIBP)																			
Palatinol Z (DIDP)																			
Palmitic acid	$C_{16}H_{32}O_2$		Sch	<200	S	01	(H)	6	В	Q ₁	M ₇	M ₆	G ₁			kr	63	351	0,8577(62)
Paradichlorobenzene → Dichlorobenzene																			
Paraffin waxes		TA,G	Sch	<160	S	11	(H)	1	$Q_1(S)$	В	V	G	G	T,R45		ра			
Paraffins, paraffin oil		S	-	<160	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Paraterphenyl \rightarrow Terphenyls																			
Paste (for gluing)		G		<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>3,4</td><td></td><td>ра</td><td></td><td></td><td></td></kp<>	D	53A		1	$Q_1(S)$	В	V	G	G	3,4		ра			
Peanut oil		N	-	<150	S	11		1	$Q_1(S)$	В	V	G	G			fl			
Pentanes:																			
lsopentane (2-Methylbutane)	$C_{5}H_{12}$	TA	_	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(S)</td><td>В</td><td>v</td><td>G</td><td>G</td><td>Xn,F+,N</td><td>1000</td><td>fl</td><td>-160</td><td>27</td><td>0,62</td></kp<>	S	11		1	Q ₁ (S)	В	v	G	G	Xn,F+,N	1000	fl	-160	27	0,62
Neopentane	05112	"`		чтр	0			·	a1(0)	5	·	ŭ	ŭ	, , , , , , , , , , , , , , , , , , ,	1000		100	21	0,02
(2,2-Dimethylpropane)	C ₅ H ₁₂	TA	-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>F+,N</td><td>1000</td><td>ga</td><td>-16</td><td>9</td><td></td></kp<>	S	11		1	$Q_1(S)$	В	V	G	G	F+,N	1000	ga	-16	9	
n-Pentane	C ₅ H ₁₂	TA	-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>Xn,F+,N</td><td>1000</td><td>fl</td><td>-130</td><td>36</td><td>0,6262</td></kp<>	S	11		1	$Q_1(S)$	В	V	G	G	Xn,F+,N	1000	fl	-130	36	0,6262
3-Pentanol	C ₅ H ₁₂ O	G	-	<60	S,Q	62		1	$Q_1(S)$	В	E	G	G	Xn,Xi	\$100	fl	<-50	116	0,82
Pentyl acetate → Acetic acid pentyl esters																			
Perchlorobenzene																			
→ Hexachlorobenzene																			
Perchloroethane																			
→ Hexachloroethane																			
Perchloroethylene → Tetrachloroethylene																			
Perhydrol \rightarrow Hydrogen																			
peroxide, 30% solution																			
Petrol (Gasoline) unleaded,				10					0 (0)										
regular and supergrade		TA,G	-	<40	S	11		1	Q ₁ (S)	В	V	G	G	T,Xn,R45,F+,N		fl		40200	0,720,76
Petrol ether \rightarrow Petrol, Gasoline																			
Petrolatum		G	Sch	<160	S	11		1	$Q_1(S)$	В	V	G	G			ра	3860	>300	0,820,88
Petroleum		G	-	<160	S	11		1	$Q_1(S)$	В	V	G	G			fl	-20	150280	
Petrol-methanol mixture		TA,G	-	<40	S	11		1	$Q_1(S)$	В	M ₁	G	G	T,Xn,R45,F+,N		fl			

Media	_	-	-				-	Mech	anical	Seal	-	-	-	Addit	tional in	forma	ation on the me	dium	
Code of materials and legend see inside of back cover.	Chemical formula	Remark	Concentration %	Temp. °C	Arrange- ment	Auxil. piping	Addit. measures	Seal type		Ma	aterials N 127			Hazard warnings	TLV- value	Normal condition	Melting temperature °C	Boiling point °C	Density g/cm ³
Please observe the note on page 1.			ncenti			Auxi	ldit. m	s	1	2	3	4	5	-		rmal c			
1		2	3	4	5	6	¥ 7	8	Seal face	Seal face	Sec. seal	Spring	Others	10	11	N 12	13	14	15
Phenol (Carbolic acid)	C ₆ H ₅ OH	TA	Sch	<Кр	D	53A		1	$Q_1(V)$	A	M ₁	G	G	T,Xn,C	5	fe	41	182	1,06
Phenol-cresol mixtures		TA	Sch	<180	D	53A		1	$Q_1(V)$	А	M ₁	G	G	T,C	5				
Phenol ether (phenyl ether)		TA, S	-	< 100	D	53A		1	$Q_1(S)$	В	M ₁	G	G	Xi,N		fl	27		1,07
Phenolic resins Phenyl ethylene \rightarrow <i>Styrene</i>		S		<200	D	53A		1	Q ₁ (S)	A	M ₁	G	G	3,U		fl			
Phenylacetic acid	C ₈ H ₈ O ₂		<l< td=""><td><kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>Xi,3</td><td></td><td>kr</td><td>76</td><td>266</td><td>1,08</td></kp<></td></l<>	<kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>Xi,3</td><td></td><td>kr</td><td>76</td><td>266</td><td>1,08</td></kp<>	S,Q	62		1	$Q_1(V)$	В	M ₂	G	G	Xi,3		kr	76	266	1,08
Phenylenediamines	0811802		12	чцр	0,4	02			a 1(1)	U	in 2	ŭ	ŭ	74,0		NI I	10	200	1,00
(Diaminobenzenes): m-Phenylenediamine o-Phenylenediamine p-Phenylenediamine	$\begin{array}{c} C_6H_8N_2\\ C_6H_8N_2\\ C_6H_8N_2 \end{array}$	TA TA TA	<l <l <l< td=""><td><Кр <Кр <Кр</td><td>S,Q S,Q D</td><td>62 62 53A</td><td></td><td>1 1 1</td><td>Q₁(S) Q₁(S) Q₁(S)</td><td>B B B</td><td>M₁ M₁ M₁</td><td>G G G</td><td>G G G</td><td>T,Xi,N F,Xi,R40,N T,Xi,N</td><td>* * 0,1 mg</td><td>kr kr kr</td><td>63 103 140</td><td>287 257(S) 267</td><td>1,11 1,14 1,135</td></l<></l </l 	<Кр <Кр <Кр	S,Q S,Q D	62 62 53A		1 1 1	Q ₁ (S) Q ₁ (S) Q ₁ (S)	B B B	M ₁ M ₁ M ₁	G G G	G G G	T,Xi,N F,Xi,R40,N T,Xi,N	* * 0,1 mg	kr kr kr	63 103 140	287 257(S) 267	1,11 1,14 1,135
Phosgene (Carbonyl dichloride, Carbon oxychloride)	COCI ₂	TA	_	<60	D	53A		1	Q1(V)	В	M1	G	G	T+,C	0,1	ga	-128	7	(+)
Phosphatizing baths: 'Iron phosphatizing solution' 'Zinc phosphatizing solution'	00019		<l <l <l< td=""><td><60 <60 <60</td><td>D S D</td><td>53A 11 53A</td><td></td><td>1 5 1</td><td></td><td>Q₁ Q₁ Q₁</td><td>M₁ V M₁</td><td>G G G</td><td>GGG</td><td>11,0</td><td>0,1</td><td>fl fl fl</td><td>120</td><td></td><td></td></l<></l </l 	<60 <60 <60	D S D	53A 11 53A		1 5 1		Q ₁ Q ₁ Q ₁	M ₁ V M ₁	G G G	GGG	11,0	0,1	fl fl fl	120		
Phosphoric acids (conc, given in % P_2O_5 ; $1 % P_2O_5 \triangleq 1.38 \% H_3PO_4$): Pure acid Raw acid, produced thermally Raw acid, produced wet			<65 <65 <55 <55 <65 <65	<40 <80 <80 <120 <80 <160	S,Q S,Q S D S D S D	62 62 02 54 02 53A	KD	1 1 3 1 4 1	Q ₁ (V) Q ₁ (V) Q ₁ Q ₁ (V) Q ₁ Q ₁ Q ₁	B B Q ₁ Q ₁ Q ₁	V V V M ₁ V M ₁	G M G M G	G M G G G G	C,6 C,6 C,2,6 C,2,6		f1 f1 f1 f1 f1 f1 f1 f1			
Superphosphoric acid			<85	<160	D	53A		1	Q1	Q1	M ₁	G	G	C,2,6		fl			
Phosphorus pentachloride	PCI ₅		<l< td=""><td><60</td><td>D</td><td>53A</td><td>SW</td><td>1</td><td>$Q_1(V)$</td><td>B</td><td>M₁</td><td>G</td><td>G</td><td>T+,Xn,2,3</td><td>1 mg</td><td>kr</td><td>100(S)</td><td></td><td>2,114</td></l<>	<60	D	53A	SW	1	$Q_1(V)$	B	M ₁	G	G	T+,Xn,2,3	1 mg	kr	100(S)		2,114
Phthalic acid Phthalic acid esters	C ₈ H ₆ O ₄		<l< td=""><td><kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td>191(Z)</td><td></td><td>1,59</td></kp<></td></l<>	<kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td>191(Z)</td><td></td><td>1,59</td></kp<>	S,Q	62		1	Q ₁ (V)	В	M ₁	G	G	Xi		kr	191(Z)		1,59
(phthalates): Benzyl butyl phthalate (BBP) -(2-ettyl hexyl)-phthalate (DEHP) Diallyl phthalate Dibutyl phthalate (DBP) Didecyl phthalate (DBP) Diisobutyl phthalate (DIP) Diisobutyl phthalate (DIP) Diisooctyl phthalate (DIP) Diisooctyl phthalate (DIP) Dimethyl glycol phthalate Dimethyl phthalate Dimethyl phthalate Dimethyl phthalate Dimethyl phthalate Dimethyl phthalate Dinoctyl phthalate	$\begin{array}{c} C_{19}H_{20}O_4\\ C_{24}H_{38}O_4\\ C_{16}H_{4}O_4\\ C_{16}H_{22}O_4\\ C_{28}H_{46}O_4\\ C_{12}H_{14}O_4\\ C_{16}H_{22}O_4\\ C_{28}H_{46}O_4\\ C_{28}H_{46}O_4\\ C_{28}H_{46}O_4\\ C_{28}H_{42}O_4\\ C_{28}H_{38}O_4\\ C_{14}H_{18}O_6\\ C_{10}H_{10}O_4\\ C_{26}H_{42}O_4\\ $	TA TA TA TA TA TA		<100 <100 <100 <100 <100 <100 <100 <100	S S S S S S S S S S S S S S S S S S S	11 62 11 11 11 11 11 11 11 11 11 11 11 11		1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} {\bf Q}_1(S) \\ {\bf Q}_1(S) $	B B B B B B B B B B B B B B B B B B B	M ₁ M ₁ M ₁ M ₁ M ₁ M ₁ M ₁ M ₁	G G G G G G G G G G G G G G G G G G G	G G G G G G G G G G G G G G G G G G G	T,R62,N V Xn,N T,R62,N Xn,R62,R63,6 T,R62	10 mg	f) f) f) f) f) f) f) f) f) f) f) f) f) f	<-35 -45 -70 -35 35 -40 -64 -50 -43 -40 5,5 -49 -49	370 385 320 34 298 305315 50267(Z) 270(27) 370 230 24 413 385	1,12 0,99 1,122 1,047 1,118 1,049 0,960,97 ~0,985 1,17 1,191 0,978 0,98 0,98
Dipentyl phthalate Diphenyl phthalate	C ₁₈ H ₂₆ O ₄ C ₂₀ H ₁₄ O ₄	TA	_	<100 <100	S S	11 11		1	$Q_1(S)$ $Q_1(S)$	B B	M ₁ M₁	G G	G G	T,R60,N		fl kr	-55 7073	340345	1,026 1,28
Phthalic anhydride	20 14 4	TA	<l< td=""><td>< 180</td><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn,Xi</td><td>1 mg</td><td>kr</td><td>131</td><td>285</td><td>1,527</td></l<>	< 180	S,Q	62		1	$Q_1(V)$	В	M ₁	G	G	Xn,Xi	1 mg	kr	131	285	1,527
Pickling brine (agu. sol. of 15 20 % NaCl)	C			<25	S	11		1	0.00	В	v	G	G			fl			
(agu. sol. of 15 20 % NaCl) Picric acid (2,4,6-Trinitrophenol) Pine oil	С ₂ С ₆ H ₃ N ₃ O ₇	TA TA	<l -</l 	<20 <40 <100	D S	53A		1	Q ₁ (V) Q ₁ (V) Q ₁ (S)	B B	v v v	G	G	T,E Xi,N	0,1 mg	kr fl	122123	180230	1,69 0,900,97
Polyglycols (Polyglycols)		s		<100	s	11		4	0 (0)	D	l v	G	G			ŧ			
(Polyalkylene glycols) Potash		5		< 100	3	11		1	Q ₁ (S)	В	V	ŭ	ŭ			fl			
→ Potassium carbonate Potash alum → Alum Potash bleaching lye → Potassium hypochlorite Potash lye																			
→ Caustic potash solution Potassium bromide	KBr KBr		<l <l< td=""><td><25 <Кр</td><td>S,Q D</td><td>62 53A</td><td></td><td>1</td><td>$Q_1(V)$ $Q_1(V)$</td><td>B B</td><td>P V</td><td>M G</td><td>M G</td><td>6 2,6</td><td></td><td>kr</td><td>732</td><td>1380</td><td>2,75</td></l<></l 	<25 <Кр	S,Q D	62 53A		1	$Q_1(V)$ $Q_1(V)$	B B	P V	M G	M G	6 2,6		kr	732	1380	2,75
Potassium carbonate (Potash), also see → Benfield solution Potassium chlorate	KCIO ₃ KCIO ₃		<l <l <l< td=""><td>< 100 < Kp < 60</td><td>S,Q D S,Q</td><td>62 53A 62</td><td></td><td>1 1 1</td><td>$Q_1(V)$ $Q_1(V)$ $Q_1(V)$</td><td>B B B</td><td>E M₁ V</td><td>G G G</td><td>G G G</td><td>Xi,6 Xn,2,0,N Xn,2,0,N</td><td></td><td>kr kr</td><td>52,5 356</td><td>891 400(Z)</td><td>2,428 2,34</td></l<></l </l 	< 100 < Kp < 60	S,Q D S,Q	62 53A 62		1 1 1	$Q_1(V)$ $Q_1(V)$ $Q_1(V)$	B B B	E M ₁ V	G G G	G G G	Xi,6 Xn,2,0,N Xn,2,0,N		kr kr	52,5 356	891 400(Z)	2,428 2,34
Potassium chloride	КСІ		<l< td=""><td><60</td><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>E</td><td>М</td><td>М</td><td>6</td><td></td><td>kr</td><td>790</td><td>1500(S)</td><td>1,984</td></l<>	<60	S,Q	62		1	$Q_1(V)$	В	E	М	М	6		kr	790	1500(S)	1,984
Potassium cyanate	KCI KOCN		<50	<kp <60</kp 	D	53A 11		1	$Q_1(V)$ $Q_1(V)$	B	M ₂ M ₁	G	G	Xn		kr	315	>700(Z)	2,056
Potassium cyanite Potassium cyanite	NUGN		<l td="" <=""><td><00</td><td>3</td><td>11</td><td></td><td></td><td>u₁(V)</td><td>D</td><td>101</td><td>u</td><td>u</td><td>All</td><td></td><td>KÍ</td><td>310</td><td>>100(Z)</td><td>2,000</td></l>	<00	3	11			u ₁ (V)	D	101	u	u	All		KÍ	310	>100(Z)	2,000
(Cyanide of potassium)	KCN		<l< td=""><td><80</td><td>D</td><td>53A</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>E</td><td>G</td><td>G</td><td>T+,N</td><td> </td><td>kr</td><td>634</td><td>1625</td><td>1,56</td></l<>	<80	D	53A		1	Q ₁ (V)	В	E	G	G	T+,N		kr	634	1625	1,56

Media								Mech	anical	Seal				Addit	tional ir	nforma	ation on the me	dium	
Code of materials and legend see inside of	Chemical formula	Remark	tion %	Temp. °C	Arrange- ment	Auxil. piping		Seal type		Ма	aterials N 127			Hazard warnings	TLV- value	condition	Melting temperature	Boiling point	Density g/cm ³
back cover. Please observe the note on page 1.			Concentration %			Auxil.	Addit. measures	Se	1	2	3	4	5	-		Normal co	°C	°C	
1		2	3	4	5	6	¥ 7	8	Seal face	Seal face	Sec. seal	Spring	Others	10	11	12	13	14	15
Potassium dichromate	K2Cr2O7 K2Cr2O7			<40 <kp< td=""><td>S,Q D</td><td>62 53A</td><td>,</td><td>1</td><td>$Q_1(V)$ $Q_1(V)$</td><td>B B</td><td>E M1</td><td>G G</td><td>G G</td><td>T+,Xn,C,R45,R46,R60,6,N T+,C,R45,R46,R60,2,6,N</td><td></td><td>kr</td><td>10</td><td>500(Z)</td><td>2,7</td></kp<>	S,Q D	62 53A	,	1	$Q_1(V)$ $Q_1(V)$	B B	E M1	G G	G G	T+,Xn,C,R45,R46,R60,6,N T+,C,R45,R46,R60,2,6,N		kr	10	500(Z)	2,7
Potassium hydrogen carbonate (Potassium bicarbonate)	KHCO ₃		<l< td=""><td><60</td><td>S,Q</td><td>62</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>E</td><td>G</td><td>G</td><td>6</td><td></td><td>kr</td><td>200(Z)</td><td></td><td>2,17</td></l<>	<60	S,Q	62		1	Q ₁ (V)	В	E	G	G	6		kr	200(Z)		2,17
Potassium hydroxide \rightarrow Caustic potash solution																			
Potassium hypochlorite	KOCI		<l< td=""><td><60</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>1.1.1</td><td>M₂</td><td>М</td><td>М</td><td>С,О</td><td></td><td>fl</td><td></td><td></td><td></td></l<>	<60	S	11		1	$Q_1(V)$	1.1.1	M ₂	М	М	С,О		fl			
Potassium nitrate	KN0 ₃		<l< td=""><td><60</td><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>P</td><td>G</td><td>G</td><td>6,0</td><td></td><td>kr</td><td>334</td><td>400(Z)</td><td>2,109</td></l<>	<60	S,Q	62		1	$Q_1(V)$	В	P	G	G	6,0		kr	334	400(Z)	2,109
Potassium permanganate E: 93°C; V: 60°C	KM _n O ₄ KM _n O ₄		<l <l< td=""><td>< 80 < Kp</td><td>S,Q S,Q</td><td>62 62</td><td></td><td>1</td><td>$Q_1(V)$ $Q_1(V)$</td><td>B B</td><td>E M₂</td><td>G G</td><td>G G</td><td>Xn,3,0,N Xn,3,0,N</td><td></td><td>kr</td><td>>240(Z)</td><td></td><td>2,703</td></l<></l 	< 80 < Kp	S,Q S,Q	62 62		1	$Q_1(V)$ $Q_1(V)$	B B	E M ₂	G G	G G	Xn,3,0,N Xn,3,0,N		kr	>240(Z)		2,703
Potassium peroxodisulfate (Potassium persulfate) Potassium phosphates	K ₂ S ₂ O ₈		<20 <l< td=""><td><60 <kp< td=""><td>S,Q S,Q</td><td>62 62</td><td></td><td>1</td><td>Q_1 $Q_1(V)$</td><td>Q₁ B</td><td>v v</td><td>G</td><td>G</td><td>Xn,Xi,3,0 3</td><td></td><td>kr kr</td><td>~100(Z)</td><td></td><td>2,48</td></kp<></td></l<>	<60 <kp< td=""><td>S,Q S,Q</td><td>62 62</td><td></td><td>1</td><td>Q_1 $Q_1(V)$</td><td>Q₁ B</td><td>v v</td><td>G</td><td>G</td><td>Xn,Xi,3,0 3</td><td></td><td>kr kr</td><td>~100(Z)</td><td></td><td>2,48</td></kp<>	S,Q S,Q	62 62		1	Q_1 $Q_1(V)$	Q ₁ B	v v	G	G	Xn,Xi,3,0 3		kr kr	~100(Z)		2,48
Potassium silicates					D	53A		1	1.1.1.1	B	E	G	G	3,4					
	K 60		<20 <l< td=""><td><kp <60</kp </td><td></td><td></td><td></td><td></td><td>$Q_1(S)$</td><td></td><td>V</td><td>G</td><td></td><td></td><td></td><td>kr</td><td>1069</td><td>1689</td><td>0.67</td></l<>	<kp <60</kp 					$Q_1(S)$		V	G				kr	1069	1689	0.67
Potassium sulfate Potato mash → <i>Mashes</i>	K_2SO_4		< L	< 00	S,Q	62		1	$Q_1(V)$	В	V	u	G	3		kr	1009	1009	2,67
		N	- 20	-00	6	00	۲D		0 (0)	D	v	0	G						
Potato scrapings		N	<30	<60	S	02	kD	1	$Q_1(S)$	B		G		0.4		ра			
Potato starch	0.11	N	-	<Кр	D	53A		1	$Q_1(S)$	B	V	G	G	3,4	1000		107	40	(.)
Propane, liquefied	C ₃ H ₈	TA	-	>-20	S	11		1	Q ₁	A	V	G	G	F+	1000	ga	-187	-42	(+)
Propanediols: 1,2-Propanediol (Propylene glycol) 1,3-Propanediol	$C_{3}H_{8}O_{2}$		-	<100	S	11		1	Q ₁ (S)	В	E	G	G			fl	-68	188	1,0381
(Trimethylene glycol) Propanols:	C ₃ H ₈ O ₂		-	<100	S	11		1	$Q_1(S)$	В	E	G	G			fl	-26	214	1,0597
1-Propanol (n-Propyl alcohol) 2-Propanol (Isopropyl alcohol)	C ₃ H ₇ OH C ₃ H ₇ OH	TA TA	-	<Кр <Кр	S S	11 11		1	$Q_1(S)$ $Q_1(S)$	B B	E	G G	G G	F,Xi F,Xi		fl fl	-127 -89	97 82	0,804 0,7855
Propene, liquefied	C ₃ H ₆	TA	-	>-20	S	11		1	Q ₁	А	V	G	G	F+		ga	-185	-48	(+)
Propine, liquefied	C_3H_4	TA	-	>-20	S	11		1	Q ₁	Α	V	G	G	F+	1000	ga	-103	-23	(+)
Propionaldehyde (Propanal, Propaldehyde)	C ₃ H ₆ O	TA	-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>Q₁(S)</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>F,Xi</td><td></td><td>fl</td><td>-81</td><td>49</td><td>0,807</td></kp<>	S	11		1	Q ₁ (S)	В	M ₁	G	G	F,Xi		fl	-81	49	0,807
Propionic acid	$C_{3}H_{6}O_{2}$		-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>C</td><td>10</td><td>fl</td><td>-22</td><td>141</td><td>0,992</td></kp<>	D	53A		1	$Q_1(V)$	В	M ₂	G	G	C	10	fl	-22	141	0,992
Propyl acetates: 1-Propyl acetate (n-Propyl acetate)	$C_5H_{10}O_2$	TA	_	<80	S,Q	62		1	Q ₁ (S)	В	M ₂	G	G	F,Xi	200	fl	-92	102	0,887
2-Propyl acetate (Isopropyl acetate)	C ₅ H ₁₀ O ₂	TA	-	<80	S,Q	62		1	Q ₁ (S)	В	M ₂	G	G	F,Xi	200	fl	-73	90	0,872
Propyl alcohols → Propanols Propylong → Propong																			
Propylene → Propene Propylene glycols → Propanediols																			
Propylene oxide	C3H60	TA	-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>К</td><td>G</td><td>G</td><td>T,R45,R46,Xi,F+</td><td></td><td>fl</td><td>-112</td><td>35</td><td>0,83</td></kp<>	D	53A		1	$Q_1(S)$	В	К	G	G	T,R45,R46,Xi,F+		fl	-112	35	0,83
Prussic acid \rightarrow Hydrocyanic acid	031160			ιψ	U	00/1			al(o)	5		u	ŭ	1,110,110,20,1			112	00	0,00
Pulp, cellulose < 1.5 % dry weight < 3 % dry weight				<90 <90	S S	11 02	KD	2	В Q ₁₂	Q ₁ Q ₁₂	V	G	G G						
> 3 % dry weight				< 90	S	02	kD	3	Q ₁	Q ₁₂	Ň	G	G						
Pydraul		®	-	<80	S	11		1	$Q_1(S)$	В	E	G	G	U		fl			
Pyridine	C ₅ H ₅ N	TA	-	<40	S,Q	62		1	$Q_1(S)$	В	M ₂	G	G	Xn,F	5	fl	-42	115	0,982
Pyrogallol (Pyrogallic acid)	0.0	TA	<l< td=""><td><100</td><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn,3</td><td></td><td>kr</td><td>133134</td><td>309</td><td>1,453</td></l<>	<100	S,Q	62		1	$Q_1(V)$	В	M ₁	G	G	Xn,3		kr	133134	309	1,453
Pyrrolidone	C ₄ H ₉ NO		<l Sch</l 	<100 <100	S S			1	Q ₁ (S) S	B B	M ₃ M ₃	G	G			kr	25	245	1,116
P-3 lye, clean			-	<60	S	11		1	$Q_1(V)$	В	E	G	G			fl			
P-3 lye; containing fats, oils and dirt		v	_	<100	S	11		1	Q ₁	Q_1	M ₁	G	G			fl			

Quench oil 6 - <200 S 32 1 0 0 M. 6 6 ft	Q															
	Quench oil	G	-	<200	S	32	1	Q ₁	Q ₁	M ₁	G	G		fl		

				_							_	_							
Media				-					anical							·	ation on the me		
Code of materials and legend see inside of back cover.	Chemical formula	Remark	Concentration %	Temp. °C	Arrange- ment	Auxil. piping	Addit. measures	Seal type			aterials N 127			Hazard warnings	TLV- value	Normal condition	Melting temperature °C	Boiling point °C	Density g/cm ³
Please observe			entr			Auxil	ŭ. Li	S	1	2	3	4	5			nal ci	, i i i i i i i i i i i i i i i i i i i	Ū	
the note on page 1.			Conc				Add			-	-	-				Vorn			
									Seal face	Seal face	Sec. seal	Spring	Others						
1		2	3	4	5	6	7	8	Š	s	l s			10	11	12	13	14	15
R	1		1			1 1							1		1	1			
Rapeseed oil \rightarrow Colza oil																			
Raw juice → <i>Sugar juices</i>																			
'Refrigerant oil' saturated																			
with R		G	-	<100	S	11		1	Q ₁	A	M ₄	G	G	U		fl			
Refrigerants, DIN 8962																			
R 12B2 (Dibromodi- fluoromethane)	Cbr ₂ F ₂	TA	-	<25	s	11		1	Q,	А	M1	G	G	Xi	100	fl	-110	23	2.215
R 14 (Tetrafluoromethane)	CDI ₂ F ₂ CF ₄			>-40	S	53A			$Q_1(S)$	B	M ₄	G	G	1.4	100	ga	-184	-128	(+)
R 21 (Fluorodichloromethane)		TA	_	>-40	D	53A			$Q_1(S)$	В	M ₄	G	G	N,1,4	10	ga	-135	-120	(+)
R 22 (Chlorodifluoromehane)		TA	_	>-40	D	53A			$Q_1(S)$	B	M ₄	G	G	N,1,4 N,1,4	V	ga	-160	-41	(+)
R 23 (Trifluoromethane)	CHF3	TA	_	>-40	D	53A			$Q_1(S)$	B	M ₄	G	G	1,4	ľ	ga	-155	-82	(+)
R 32 (Difluoromethane)	CH ₂ F ₂	TA	-	>-40	D	53A			$Q_1(S)$	B	M ₄	G	G	F+,1,4		ga	-136	-52	(+)
R 116 (Hexafluoroethane)	CF ₆	TA	_	>-40	D	53A			$Q_1(S)$	B	M ₄	G	G	1,4		ga	-101	-78	(+)
R 133a (2-Chloro-	016	1		2 40		00/1		'	u1(0)	D	1114	L a	u u	1,7		gu	101	10	(.)
1,1,1-trifluoroethane)	CH ₂ CIF ₃	TA	_	>-40	D	53A		1	$Q_1(S)$	В	M₄	G	G	N,1,4		ga	-105	6	(+)
R 142b (1-Chloro-	0112011 3	1		2 40		00/1		'	u1(0)	D	1114	L a	u u	14,1,7		gu	100	U	(.)
1,1-difluoroethane)	CH ₂ CIF ₂	TA	_	>-40	D	53A		1	$Q_1(S)$	В	M₄	G	G	1.4.F+.N	1000	ga	-131	-10	(+)
R 143a (1.1.1-Trifluoroethane)	0 0	TA		>-40	D	53A			$Q_1(S)$	B	M ₄	G	G	1.4.F+		ga	-111	-47	(+)
R 152a (1,1-Difluoroethane)		TA	-	>-40	D	53A			$Q_1(S)$	B	M ₄	G	G	F+,1,4		ga	-117	-25	(+)
R 218 (Octafluoropropane)	C ₃ F ₈	TA	-	>-40	D	53A			$Q_1(S)$	B	M ₄	G	G	1,4		ga	-183	-37	(+)
R 610 (Decafluorobutane)	C ₄ F ₁₀	TA	_	>-40	D	53A			$Q_1(S)$	B	M ₄	G	G	1.4		ga	100	07	-2 (+)
R 1112a	04110	1	_	<20	S	11				B	M ₄	G	G	1,7		fl	-127	20	1.555
			_	>20	D	53A		li	$Q_1(S)$	B	M ₄	G	G	1,4				20	1,000
R 1113				. 20	Ī			·	-1(-)	-	4	-	Ĩ	.,.					
(Chlorotrifluoroethylene)	CCIF ₃	TA	-	>-40	D	53A		1	$Q_1(S)$	В	M₄	G	G	T,1,4,F+		ga	-158	-28	(+)
R 1122	3							·	-1(-)	-	4	-	-	.,.,.,		3-			· · /
(Chlorodifluoroethylene)	CHCIF ₂	TA	-	>-40	D	53A		1	$Q_1(S)$	В	M4	G	G	1,4,F+,N		ga	-138	-18	(+)
R 1132a	- -										·								
(1,1-Difluoroethylene)	$C_2H_2F_2$	TA	-	>-40	D	53A		1	$Q_1(S)$	В	M ₄	G	G	Xn,R40,1,4,F+		ga	-144	-86	(+)
RC 318																			
(Octafluorocyclobutane)	C ₄ F ₈	TA	-	<-40	D	53A		1	$Q_1(S)$	В	M ₄	G	G	1,4		ga	-41	-6	(+)
Rinsing agent (industrial)			-	<100	S	11		1	$Q_1(S)$	В		G	G						
					<80	S	S	1	$Q_1(S)$	В	M ₄	G	G						

S																		
Saccharose (sugar)	C ₁₂ H ₂₂ O ₁₁		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>٧</td><td>G</td><td>G</td><td>3,4</td><td>kr</td><td>185186</td><td></td><td>1,588</td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>٧</td><td>G</td><td>G</td><td>3,4</td><td>kr</td><td>185186</td><td></td><td>1,588</td></kp<>	D	53A		1	$Q_1(S)$	В	٧	G	G	3,4	kr	185186		1,588
Salicylic acid	$C_7 H_6 O_3 \\ C_7 H_6 O_3$		<l Sch</l 	<25 <180	S S	11 53A	(H)	1	$Q_1(V)$ $Q_1(V)$	B B	E M ₂	G G	G G	Xn Xn,2,3	kr	157159	211(27)	1,44
Salmiac → Ammonium chloride																		
Salt mashes \rightarrow Mashes																		
Santotherm → Heat transfer oils		®																
Sea water → Water																		
Sewage sludge		G		<80	S	32		1	Q ₁	Q_1	٧	G	G		ра			
Sewage water \rightarrow Water																		
Shampoo \rightarrow Hair shampoos																		
Silicon chlorides: Disilicon hexachloride (Hexachlorodisilane)	Si ₂ Cl ₆		-	<Кр	D	53A		1	Q ₁ (V)	В	M ₁	G	G	C,3	fl	-1	147	1,58
Silicon tetrachloride (Tetrachlorosilane)	SiCl ₄		-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xi,3</td><td>fl</td><td>-70</td><td>57</td><td>1,483</td></kp<>	D	53A		1	$Q_1(V)$	В	M ₁	G	G	Xi,3	fl	-70	57	1,483
Silicones, silicone oils			-	<100	S	11		1	$Q_1(S)$	В	E	G	G		fl			
Silver nitrate	AgNO ₃		<l< td=""><td><kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>Q₁</td><td>Q_1</td><td>M₂</td><td>G</td><td>G</td><td>C,N</td><td>kr</td><td>212</td><td>>250(Z)</td><td>4,352</td></kp<></td></l<>	<kp< td=""><td>S,Q</td><td>62</td><td></td><td>1</td><td>Q₁</td><td>Q_1</td><td>M₂</td><td>G</td><td>G</td><td>C,N</td><td>kr</td><td>212</td><td>>250(Z)</td><td>4,352</td></kp<>	S,Q	62		1	Q ₁	Q_1	M ₂	G	G	C,N	kr	212	>250(Z)	4,352
Skin creams		G	-	<60	S	11		1	$Q_1(S)$	В	V	G	G		ра			
Skydrol → Hydraulic fluids HFC		®																
Soap solution			-	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td></td><td>fl</td><td></td><td></td><td></td></kp<>	S	11		1	$Q_1(S)$	В	V	G	G		fl			
Soda → Sodium carbonate																		
Soda lye → Caustic soda solution																		
Sodium acetate	$C_2H_3NaO_2$		<l< td=""><td><kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td></td><td>kr</td><td>58</td><td>324(Z)</td><td>1,54</td></kp<></td></l<>	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td></td><td>kr</td><td>58</td><td>324(Z)</td><td>1,54</td></kp<>	S	11		1	$Q_1(V)$	В	M ₂	G	G		kr	58	324(Z)	1,54
Sodium bi $\dots \rightarrow$ Sodium hydrogen \dots																		
Sodium bleaching lye → Sodium hypochlorite																		
Sodium carbonate (Soda)	Na ₂ CO ₃		<l< td=""><td><80</td><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>E</td><td>G</td><td>G</td><td>Xi,4</td><td>kr</td><td>854</td><td>>400(Z)</td><td>2,532</td></l<>	<80	S,Q	62		1	$Q_1(S)$	В	E	G	G	Xi,4	kr	854	>400(Z)	2,532
Sodium chlorate	NaCIO ₃		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn,3,0,N</td><td>kr</td><td>255(Z)</td><td></td><td>2,49</td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xn,3,0,N</td><td>kr</td><td>255(Z)</td><td></td><td>2,49</td></kp<>	D	53A		1	$Q_1(V)$	В	M ₁	G	G	Xn,3,0,N	kr	255(Z)		2,49

Media								Mech	anical	Seal				ibbA	tional in	ıform	ation on the me	dium	
Code of materials and legend see inside of back cover.	Chemical formula	Remark	Concentration %	Temp. °C	Arrange- ment	Auxil. piping	Addit. measures	Seal type		Ma	aterials N 127			Hazard warnings	TLV- value	ie.	Melting temperature °C	Boiling point °C	Density g/cm ³
Please observe the note on page 1.			oncenti			Auxi	ddit. m	S	1	2	3	4	5			ormal c			
4		2	3	4	5	6	e 7	8	Seal face	Seal face	Sec. seal	Spring	Others	10	11	12	13	14	15
Sodium chloride	NaCl		~L	- 4 <80	S,Q	11		5	Q ₁	Q ₁	E	М	М	10		kr	801	14	2,164
	NaCl		<5	<30	S	11		1	$Q_1(V)$	B	E	G	G						2,101
Sodium chlorite	NaClO ₂		<l< td=""><td><25</td><td>S</td><td>11</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>V</td><td>G</td><td>G</td><td>T,0</td><td></td><td>kr</td><td>>150(Z)</td><td></td><td></td></l<>	<25	S	11		5	Q ₁	Q ₁	V	G	G	T,0		kr	>150(Z)		
Sodium cyanide	NaCN		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>T+,N</td><td>5</td><td>kr</td><td>564</td><td>1496</td><td>1,546</td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>T+,N</td><td>5</td><td>kr</td><td>564</td><td>1496</td><td>1,546</td></kp<>	D	53A		1	$Q_1(V)$	В	M ₂	G	G	T+,N	5	kr	564	1496	1,546
Sodium dichromate (VI)	Na ₂ Cr ₂ O ₇		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>C,T+,Xn,R45,R46,O,N</td><td>*</td><td>kr</td><td>357</td><td>>400(Z)</td><td>2,52</td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>C,T+,Xn,R45,R46,O,N</td><td>*</td><td>kr</td><td>357</td><td>>400(Z)</td><td>2,52</td></kp<>	D	53A		1	$Q_1(V)$	В	M ₁	G	G	C,T+,Xn,R45,R46,O,N	*	kr	357	>400(Z)	2,52
Sodium disulfite	Na ₂ S ₂ O ₅		<l< td=""><td><100</td><td>S</td><td>11</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>V</td><td>G</td><td>G</td><td>Xn,Xi</td><td></td><td>kr</td><td>>150(Z)</td><td></td><td>1,48</td></l<>	<100	S	11		5	Q ₁	Q ₁	V	G	G	Xn,Xi		kr	>150(Z)		1,48
Sodium dithionite Sodium hydrogen carbonate	Na ₂ S ₂ O ₄		<l< td=""><td><60</td><td>S,Q</td><td>62</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>E</td><td>G</td><td>G</td><td>Xn,3</td><td></td><td>kr</td><td>>100(Z)</td><td></td><td>2,37</td></l<>	<60	S,Q	62		5	Q ₁	Q ₁	E	G	G	Xn,3		kr	>100(Z)		2,37
(Bicarbonate of sodium,																			
Sodium bicarbonate)	NaHCO ₃		<l< td=""><td><60</td><td>S</td><td>11</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>E</td><td>G</td><td>G</td><td></td><td></td><td>kr</td><td>270(Z)</td><td></td><td>2,22</td></l<>	<60	S	11		5	Q ₁	Q ₁	E	G	G			kr	270(Z)		2,22
Sodium hydrogen sulfate	NaHSO ₄		<l< td=""><td><Кр</td><td>S</td><td>11</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>V</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td>>315(Z)</td><td></td><td>2,103</td></l<>	<Кр	S	11		5	Q ₁	Q ₁	V	G	G	Xi		kr	>315(Z)		2,103
Sodium hydrogen sulfide	NaHS		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>T,3</td><td></td><td>kr</td><td>350</td><td></td><td>1,79</td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>V</td><td>G</td><td>G</td><td>T,3</td><td></td><td>kr</td><td>350</td><td></td><td>1,79</td></kp<>	D	53A		1	$Q_1(V)$	В	V	G	G	T,3		kr	350		1,79
Sodium hydrogen sulfite = aqueous solution of → Sodium disulfite																			
Sodium hydrosulfate → Sodium hydrogon sulfato																			
→ Sodium hydrogen sulfate Sodium hydroxide																			
→ Caustic soda solution																			
Sodium hypochlorite ('Chlorine bleaching lye')	NaOCI		<l< td=""><td><30</td><td>S</td><td>11</td><td></td><td>1</td><td>Q₁</td><td>Q1</td><td>м</td><td>м</td><td>м</td><td>C,N</td><td></td><td>kr</td><td></td><td></td><td></td></l<>	<30	S	11		1	Q ₁	Q1	м	м	м	C,N		kr			
Sodium metaaluminate	NaOCI NaAlO ₂		<l <l< td=""><td>< 60</td><td>S</td><td>11</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>M₂ E</td><td>G</td><td>G</td><td>C C</td><td></td><td>kr</td><td>1650</td><td></td><td></td></l<></l 	< 60	S	11		5	Q ₁	Q ₁	M ₂ E	G	G	C C		kr	1650		
Sodium nitrate	NaNO ₃		<l< td=""><td><80</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>B</td><td>E</td><td>G</td><td>G</td><td>0</td><td></td><td>kr</td><td>307</td><td>380(Z)</td><td>2,261</td></l<>	<80	S	11		1	$Q_1(S)$	B	E	G	G	0		kr	307	380(Z)	2,261
Sodium nitrite	NaNO ₂		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>T,3,0,N</td><td></td><td>kr</td><td>271</td><td>>320(Z)</td><td>2,17</td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>T,3,0,N</td><td></td><td>kr</td><td>271</td><td>>320(Z)</td><td>2,17</td></kp<>	D	53A		1	$Q_1(V)$	В	M ₂	G	G	T,3,0,N		kr	271	>320(Z)	2,17
Sodium perborate	NaBO ₃ -4H ₂ O NaBO ₃ -4H ₂ O		<10 <10	<25 <Кр	S,Q D	62 53A		5 1	Q ₁ Q ₁ (V)	Q ₁ B	E M ₂	G G	G G	Xn,3,6,0 Xn,2,3,6,0		kr	>60(Z)		1,731
Sodium perchlorate	NaClO ₄		<l< td=""><td><Кр</td><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₂</td><td>G</td><td>G</td><td>Xn,2,3,0</td><td></td><td>kr</td><td>482(Z)</td><td></td><td>2,50</td></l<>	<Кр	D	53A		1	$Q_1(V)$	В	M ₂	G	G	Xn,2,3,0		kr	482(Z)		2,50
Sodium peroxide (Sodium superoxide)	Na ₂ O ₂		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q1</td><td>Q1</td><td>M₂</td><td>G</td><td>G</td><td>C,2,3,0</td><td></td><td>kr</td><td>460</td><td>657(Z)</td><td>2,8</td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q1</td><td>Q1</td><td>M₂</td><td>G</td><td>G</td><td>C,2,3,0</td><td></td><td>kr</td><td>460</td><td>657(Z)</td><td>2,8</td></kp<>	D	53A		1	Q1	Q1	M ₂	G	G	C,2,3,0		kr	460	657(Z)	2,8
Sodium phosphates			<l< td=""><td><kp< td=""><td>S,Q</td><td>62</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>E</td><td>G</td><td>G</td><td>3,6</td><td></td><td>kr</td><td>1018</td><td></td><td>1,39</td></kp<></td></l<>	<kp< td=""><td>S,Q</td><td>62</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>E</td><td>G</td><td>G</td><td>3,6</td><td></td><td>kr</td><td>1018</td><td></td><td>1,39</td></kp<>	S,Q	62		5	Q ₁	Q ₁	E	G	G	3,6		kr	1018		1,39
Sodium silicate (Water glass)			<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>E</td><td>G</td><td>G</td><td>Xi,3,4</td><td></td><td>kr</td><td></td><td></td><td></td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>E</td><td>G</td><td>G</td><td>Xi,3,4</td><td></td><td>kr</td><td></td><td></td><td></td></kp<>	D	53A		1	$Q_1(S)$	В	E	G	G	Xi,3,4		kr			
Sodium sulfate (Glauber's salt)	Na ₂ SO ₄		<l< td=""><td><80</td><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>Р</td><td>G</td><td>G</td><td>3</td><td></td><td>kr</td><td>888</td><td></td><td>2,68</td></l<>	<80	S,Q	62		1	$Q_1(V)$	В	Р	G	G	3		kr	888		2,68
Sodium sulfite	Na ₂ SO ₃		<l< td=""><td><kp< td=""><td>S</td><td>11</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>E</td><td>G</td><td>G</td><td></td><td></td><td>kr</td><td>150</td><td></td><td>2,633</td></kp<></td></l<>	<kp< td=""><td>S</td><td>11</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>E</td><td>G</td><td>G</td><td></td><td></td><td>kr</td><td>150</td><td></td><td>2,633</td></kp<>	S	11		5	Q ₁	Q ₁	E	G	G			kr	150		2,633
Sodium thiocyanate	NaSCN		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>E</td><td>G</td><td>G</td><td>Xn</td><td>5</td><td>kr</td><td>287</td><td></td><td>1,73</td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>E</td><td>G</td><td>G</td><td>Xn</td><td>5</td><td>kr</td><td>287</td><td></td><td>1,73</td></kp<>	D	53A		1	$Q_1(V)$	В	E	G	G	Xn	5	kr	287		1,73
Sodium thiosulfate	Na ₂ S ₂ O ₃ *5H ₂ O		<l< td=""><td><80</td><td>S,Q</td><td>62</td><td></td><td>1</td><td>$Q_1(V)$</td><td>B</td><td>E</td><td>G</td><td>G</td><td>3</td><td></td><td>kr</td><td>48</td><td></td><td>1,73</td></l<>	<80	S,Q	62		1	$Q_1(V)$	B	E	G	G	3		kr	48		1,73
Soft soap Softener			-	>F<100	S	11		1	Q ₁ (S)	В	V	G	G			pa			
→ Phthalic acid esters																			
Soiled water \rightarrow Water																			
Soot-water mixture			<10	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>U₁</td><td>U₁</td><td>V</td><td>G</td><td>G</td><td></td><td></td><td>fl</td><td></td><td></td><td></td></kp<>	S	11		1	U ₁	U ₁	V	G	G			fl			
Soybean oil		N	-	<100	S	11		1	$Q_1(S)$	В	V	G	G			fl	-1610		0,92
Spinach mash		Ν	-	<80	S	11		1	$Q_1(S)$	В	V	G	G			pa			
Spirits of salmiac → Ammonia aqu. Solutions																			
Spirit of wine \rightarrow <i>Ethanol</i>																			
Spirit \rightarrow <i>Ethanol</i>																			
Steam	H ₂ 0		-	<180	D	53A		1	$Q_1(S)$	В	E	G	G	1		fl		100	
Stearic acid																			
(Octadecanoic acid)	C ₁₈ H ₃₆ O ₂		Sch	<130	S	11 52A		1	$Q_1(V)$	B	M ₂	G	G	Vn 0		fe	69 872	370	0,94
Strontium chloride Strontium nitrate	SrCl ₂ Sr(NO ₃) ₂		<l< td=""><td><Кр <Кр</td><td>D</td><td>53A 53A</td><td></td><td>1</td><td>$Q_1(V)$ $Q_1(V)$</td><td>B</td><td>M₁ M₂</td><td>G G</td><td>G</td><td>Xn,2 Xi,2,0</td><td></td><td>kr kr</td><td>872 570</td><td></td><td>3,094 2,93</td></l<>	<Кр <Кр	D	53A 53A		1	$Q_1(V)$ $Q_1(V)$	B	M ₁ M ₂	G G	G	Xn,2 Xi,2,0		kr kr	872 570		3,094 2,93
Styrene (Vinylbenzene,	31(1NO ₃) ₂			< vh		JJA		1	u ₁ (v)		11/2	u	u	ΛI, 2, U		N	370		2,30
Phenylethylene)	C ₈ H ₈		-	<80	S,Q	53A		Х	$Q_1(S)$	В	M ₁	G	G	Xn,Xi,3,4	20	fl	-33	146	0,909
Succinic acid	$C_4H_6O_4$		<l< td=""><td><kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td>186</td><td>235</td><td>1,56</td></kp<></td></l<>	<kp< td=""><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td>186</td><td>235</td><td>1,56</td></kp<>	S	11		1	$Q_1(S)$	В	M ₁	G	G	Xi		kr	186	235	1,56
Sugar juices (conc. data in Brix): Clairce			>70 <20	<95 <70	D D	53A 11		1	Q ₁₂	Q ₁₂	V V	G G	G G						
Raw juice			>70	< 95	D	53A		1	Q ₁₂ Q ₁₂	Q ₁₂ Q ₁₂	v	G	G						
Thick juice Thin juice Sulfamic acid			<20	<100	D	11		2	Q ₁₂	Q ₁₂	V	G	G						
→ Amidosulfuric acid Sulfite lye																			
\rightarrow Calcium hydrogen sulfite																			
Sulfolan \rightarrow Tetrahydro-																			
thiophene-1,1-dioxide																			
Sulfur chlorides: Disulfur dichloride	S ₂ Cl ₂		-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q₁(V)</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>T,C,2,N</td><td>1</td><td>fl</td><td>-80</td><td>136</td><td>1,678</td></kp<>	D	53A		1	Q ₁ (V)	В	M ₁	G	G	T,C,2,N	1	fl	-80	136	1,678
Sulfur dichloride	SCI ₂		-	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>C,2,N</td><td></td><td>fl</td><td>-122</td><td>59</td><td>1,621</td></kp<>	D	53A		1	$Q_1(V)$	В	M ₁	G	G	C,2,N		fl	-122	59	1,621
Sulfur dioxide	SO ₂		-	<80	D	53A		1	$Q_1(V)$	В	E	G	G	T,1	2	ga	-75	-10	(+)

Media								Mech	ianical	Seal				Addit	ional in	forma	ation on the me	dium	
Code of materials and legend see inside of back cover.	Chemical formula	Remark	Concentration %	Temp. °C	Arrange- ment	Auxil. piping	Addit. measures	Seal type			iterials N 1275			Hazard warnings	TLV- value	Normal condition	Melting temperature °C	Boiling point °C	Density g/cm ³
Please observe			cent			Aux	lit. n		1	2	3	4	5			nal c			
the note on page 1.		2	con Con	4	5	6	7 Add	8	Seal face	Seal face	Sec. seal	Spring	Others	10	11	LION 12	13	14	15
Sulfur fluorides: Disulfur decafluoride (Sulfur pentafluoride) Disulfur difluoride (Thiothionylfluoride) Sulfur hexafluoride Sulfur tetrafluoride	S2F10 S2F2 SF6 SF4			<Кр <60 <60 <60	S,Q D D D	62 53A 53A 53A		1 1 1 1 1	Q ₁ (V) Q ₁ (V) Q ₁ (V) Q ₁ (V)	B B B B	M ₂ M ₂ M ₂ M ₂	G G G G	G G G G	1 1 T+.C.1	0,025 1000	fl ga ga ga	-92 -164 -51 -121	29 ~-11 -64(S) -40	2,08(0) (+) (+) (+)
Sulfur tetrafluoride \rightarrow Sulfur fluorides	0.14					00/1				5			u			gu		10	(*)
Sulfur trioxide (molten or gaseous)	SO ₃		-	>F<160	D	54		1	Q ₁	Q ₁	M ₁	G	G	C,1,2,3,4		kr	1762	45	1,972,00
Sulfur, molten	S S		Sch Sch	<220 <200	S S	01 01	(H) H	6 1	A Q ₁	Q ₁ A	U ₁ M ₁	M ₆ G	G ₁ G	F		kr	110119	444	1,962,07
Sulfuric acid	$\begin{array}{c} H_2 S 0_4 \\ H_2 S 0_4 \end{array}$		<10 <20 <96 >80 >90 >90	<30 <30 <30 <30 <30 <30 <30 <20	S,Q S,Q S,Q S,Q S,Q S,Q S,Q	62 62 62 62 62 62 62 62		1 1 1 1 1 1	$\begin{array}{c} Q_{1}(V) \\ Q_{1}(V) \\ Q_{1}(V) \\ Q_{1}(V) \\ Q_{1} \\ Q_{1} \\ Q_{1} \\ Q_{1} \\ Q_{1} \end{array}$	B B B Q ₁ Q ₁ Q ₁	V M ₁ V V V M ₁	G M M G G	G M M G G	Xi Xi,2 C,2 C C C C,2 C C,2			5% -2 10% -5 20% -14 40% -68 60% -29 80% -1 96% -11 98% +2	5% 101 10% 102 20% 105 40% 113 60% 140 80% 205 96% 310 98% 330	5% 1,032 10% 1,066 20% 1,139 40% 1,303 60% 1,498 80% 1,727 96% 1,835 98% 1,836
Sulfuric acid, fuming (= Oleum = conc. H_2SO_4 + free SO_3)	H ₂ SO ₄ +SO ₃ H ₂ SO ₄ +SO ₃		<40 <60	<30 <30	S,Q S,Q	62 62		4	Q ₁ Q ₁	Q ₁ Q ₁	М ₁ М1	M M	M M	C,Xi				40%~100 60%~70	
Sulfurous acid (aqueous solution of SO ₂)	H ₂ SO ₃ H ₂ SO ₃		<l <l< td=""><td><kp <20</kp </td><td>S,Q S,Q</td><td>62 11</td><td></td><td>1 1</td><td>$Q_1(V)$ $Q_1(V)$</td><td>B B</td><td>M₂ E</td><td>M G</td><td>M G</td><td>C,2</td><td></td><td>fl</td><td></td><td></td><td></td></l<></l 	<kp <20</kp 	S,Q S,Q	62 11		1 1	$Q_1(V)$ $Q_1(V)$	B B	M ₂ E	M G	M G	C,2		fl			
Synthetic resin laquers and glues		S	_	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>Q₁(S)</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>3,4</td><td></td><td>fl</td><td></td><td></td><td></td></kp<>	D	53A		1	Q ₁ (S)	В	M ₁	G	G	3,4		fl			

T																			
Table salt \rightarrow Sodium chloride																			
Table vinegar \rightarrow Acetic acid																			
Tall oil fatty acids			Sch Sch	<200 >200	S,Q S,Q	62 62		1 6	Q ₁ A	A Q ₁	M ₁ G	M M ₅	M M	3 3		fe			
Tall oil pitch			Sch	<150	S,Q	62		1	Q ₁	Α	M ₁	М	G	Xi,3		fe			
Tall oil resin (acids)			Sch Sch	<200 >200	S,Q S,Q	62 62		1 6	Q ₁ A	A Q ₁	M ₁ G	M M ₅	M M	3 3		fe			
Tall oil, crude			Sch	<120	S,Q	62		1	Q ₁	Α	M ₁	G	G	3		ра			0,95
Tallow			Sch	<100	S	11		1	$Q_1(S)$	В	V	G	G			fe	4070		
Tannery waste water, pH = 9 - 11			_	<40	S	11		1	Q ₁ (V)	В	v	G	G			fl			
Tannic acids \rightarrow Tannines																			
Tannines (natural Polyphenols)		G	<l< td=""><td><100</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>۷</td><td>G</td><td>G</td><td></td><td></td><td>fe</td><td></td><td></td><td></td></l<>	<100	S	11		1	$Q_1(S)$	В	۷	G	G			fe			
Tar, tar oil \rightarrow Coal tar																			
Tartaric acid			<l< td=""><td><60</td><td>S</td><td>11</td><td></td><td>1</td><td>$Q_1(S)$</td><td>В</td><td>۷</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td>~170</td><td></td><td>1,761,79</td></l<>	<60	S	11		1	$Q_1(S)$	В	۷	G	G	Xi		kr	~170		1,761,79
Taurine (2-Aminoethan- esulfonic acid)	C ₂ H ₇ NO ₃ S		<l< td=""><td>< 80</td><td>S</td><td>11</td><td></td><td>1</td><td>Q₁</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>Xi</td><td></td><td>kr</td><td>328(Z)</td><td></td><td></td></l<>	< 80	S	11		1	Q ₁	В	M ₁	G	G	Xi		kr	328(Z)		
Terphenyls (diphenyl benzenes): m-Terphenyl	$C_{18}H_{14}$																		
(1,3-Diphenyl benzene) o-Terphenyl	$C_{18}H_{14}$		Sch	<180	S,Q	62	(H)	1	Q ₁ (S)	В	M ₁	G	G	Xi,3		kr	89	365	
(1,2-Diphenyl benzene) p-Terphenyl	$C_{18}H_{14}$		Sch	<180	S,Q	62	(H)	1	$Q_1(S)$	В	M ₁	G	G	Xn,3		kr	5758	332	
(1,4-Diphenyl benzene)	C ₁₈ H ₁₄		Sch	<kp< td=""><td>S,Q</td><td>62</td><td>(H)</td><td>6</td><td>A</td><td>Q₁</td><td>G</td><td>M₆</td><td>T4</td><td>Xi,3</td><td></td><td>kr</td><td>213</td><td>404</td><td>1,234</td></kp<>	S,Q	62	(H)	6	A	Q ₁	G	M ₆	T4	Xi,3		kr	213	404	1,234
Tetrabromoethane (Acetylene tetrabromide)	$C_2H_2Br_4$	TA	-	<160	D	53A		1	Q ₁ (V)	В	M ₁	G	G	T+,Xi	1	fl	0	135	2,9673
Tetrachloroethane (Acetylene tetrachloride)	$C_2H_2CI_4$	TA	_	< Kp	D	53A		1	Q ₁ (V)	В	M ₁	G	G	T+,N	1	fl	-42	146	1,5953
Tetrachloroethylene (Perchloroethylene)	C ₂ Cl ₄	TA	-	<60	S	11		1	Q ₁ (S)	В	M ₁	G	G	Xn,R40,N	50	fl	-23	121	1,63
Tetrachloroethylene, contaminated		TA	_	<60	S	11		1	Q ₁ (V)	В	M ₁	G	G	Xn,R40,N					
Tetrachloromethane → Carbon tetrachloride																			
Tetraethylene glycol → Ethylene glycols																			
Tetrahydrofuran (Tetramethylene oxide, Oxolane)	C ₄ H ₈ 0	TA	-	<40	S,Q	62		1	Q ₁ (V)	В	M ₂	G	G	Xi,F,6	200	fl	-108	65	0,8892

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Media								Mech	anical	Seal				Addit	tional ir	forma	ition on the me	dium	
Please basine the note on page 1. Please basine the note on page 1. Please basine page 2. Please 2. <	Code of materials and	Chemical	ark	%			ing				Ma					TLV-	i	Melting	Boiling	Density
Please observe the note on page 1. Please observe the note on page 1. Please observe (not on page 1.) Please observe (not observe 1.) Please observe 1.0 P	U U	formula	Rem	ation	°C	ment	. pip	easu	eal ty		E	N 127	56		-	value	ondit			g/cm ³
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				entr			Auxil		s l	1	2	3	4	5	-		nal ci	Ū	Ū	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	the note on page 1.			Conc				Addi		-							Norm			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										face	face	seal	B	ers						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										seal	seal	Sec.	Spri	븅						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1		2	3	4	5	6	7	8						10	11	12	13	14	15
Initic ling \rightarrow Sugar juices		011.0.0		Cab	.00		11	(11)		0.00					Va		la.	07	005	1.00
Thick ingure (suffice chemical pulp) The super values G	. ,	0 ₄ n ₈ 0 ₂ 3		SUI	<00	3	11	(П)		u ₁ (v)	D	1VI1	u	u	All		KI	21	200	1,20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																				
Thick Image: constraint of the second s			G	-	<Кр	D	53A		1	$Q_1(V)$	В	M ₁	G	G						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					14		504			0.00						0.5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			G	-	< Кр	U	53A			u ₁ (v)	B	M ₁	G	G	U	0,5	TI			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0																			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Titanium(IV) chloride									0.44								-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		TiCl ₄		-	< Kp	D	53A		1	Q ₁ (V)	В	M ₁	G	G	C,2,3		fl	-25	136	1,726
Solution in sulfuric acid TiD2		TiCl ₃		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>C,2,3,F</td><td></td><td>kr</td><td>440(Z)</td><td></td><td>2,64</td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>C,2,3,F</td><td></td><td>kr</td><td>440(Z)</td><td></td><td>2,64</td></kp<>	D	53A		1	$Q_1(V)$	В	M ₁	G	G	C,2,3,F		kr	440(Z)		2,64
Titanium dioxide - Suspension in water L K V <td></td> <td>7:0</td> <td></td> <td></td> <td>400</td> <td></td> <td>0.0</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		7:0			400		0.0					-								
Suspension in water < < < < SQ 53A X U2 $0_1(V)$ E G G 4 kr > 1800 3.94; Tobacco emulsion - <60		110 ₂		<l< td=""><td>< 180</td><td>5</td><td>02</td><td>KU</td><td>X</td><td>u₁</td><td>u₁</td><td></td><td>M</td><td>G</td><td>G,2</td><td></td><td></td><td></td><td></td><td></td></l<>	< 180	5	02	KU	X	u ₁	u ₁		M	G	G,2					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				<40	<kp< td=""><td>S,Q</td><td>53A</td><td></td><td>X</td><td>U₂</td><td>Q₁(V)</td><td>E</td><td>G</td><td>G</td><td>4</td><td></td><td>kr</td><td>>1800</td><td></td><td>3,94,26</td></kp<>	S,Q	53A		X	U ₂	Q ₁ (V)	E	G	G	4		kr	>1800		3,94,26
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tobacco emulsion			-					_	Q ₁										
Tooth pastes G - <40 S 11 1 Q1		C ₇ H ₈	TA	-	<60	S	11		1	$Q_1(S)$	A	K	G	G	Xn,Xi,R63,F	100	fl	-95	111	0,866
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. 40	0	11		1			V	0							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			6	-	<40	5				u ₁	u ₁	V	L G	L U			pa			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(TBP, Phosphoric acid	CtoHozO4P	ТА	_	< 60	s	11		1	0.(V)	в	М.	G	G	Xn.Xi.R40		fl	-79	293	0,979
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Sch				SW,H	1											1,63(60)
1,1,2-Trichloroethane C ₂ H ₃ Cl ₃ TA - <60 S,0 62 1 0 ₁ (V) B M ₁ G G M I I I -35 113114 1,441 Trichloroethylene C ₂ HCl ₃ TA - <25																				
TA - <60 S,Q 62 1 Q ₁ (S) B M ₁ G G T,Xi,R45,6		C ₂ H ₃ Cl ₃	TA	-	<60	S,Q	62		1	$Q_1(V)$	В	M ₁	G	G	Xn,R40	10	fl	-35	113114	1,4416
	Trichloroethylene	C2HCI3		1					1 .							50	fl	-86	87	1,4649
	Trichloronitromethane		IA	-	<60	S,Q	62		1	u ₁ (S)	В	M ₁	G	G	I,XI,K45,6					
(Chloropicrine) CCl ₃ NO ₂ TA - <60 S,Q 62 1 Q ₁ (V) B M ₁ G G T+,Xi,6 0,1 fl -64 112 1,656		CCI ₃ NO ₂	TA	-	<60	S,Q	62		1	$Q_1(V)$	В	M ₁	G	G		0,1	fl	-64	112	1,6566
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		TA	-			_		· ·			-			T,N					1,171,18
				-			1					-								1,1242
		C ₆ H ₁₅ N	IA	-	<60	S,Q	62		1	Q ₁ (S)	В	M ₂	G	G	Xn,C,F	10	tl	-115	89	0,728
Triethylene glycol → Ethylene glycols																				
Trifluoroborane → Boron trifluoride	Trifluoroborane																			
Triglycol → Ethylene glycols																				
Trisodium phosphate → Sodium phosphates S	Trisodium phosphate	S																		
Tung oil → Wood oil																				
Turbine oils - <100 S 11 1 Q1(S) B V G G U fl	Turbine oils			-	<100	S	11		1		В	۷	G		U		fl			
			_																	1,03
															Xn,Xi,R46,N	100			155180	0,850,87
Tutogen (18) - <60 S 11 1 0,(S) B V G G 1	rutogen		®	-	<60	S	11		1	U ₁ (S)	B	V	l G	li			TI I			

U																	
Urea (Carbamide)	CH ₄ N ₂₀		<l< td=""><td><100</td><td>D</td><td>53A</td><td>1</td><td>Q</td><td>1₂₂ Q</td><td>1(V)</td><td>Ε</td><td>G</td><td>G</td><td>3,4</td><td>kr</td><td>132</td><td>1,323</td></l<>	<100	D	53A	1	Q	1 ₂₂ Q	1(V)	Ε	G	G	3,4	kr	132	1,323
	CH ₄ N ₂₀		<l< td=""><td><100</td><td>D</td><td>53A</td><td>5</td><td>i C</td><td>Q₁</td><td>Q₁</td><td>E</td><td>G</td><td>G</td><td>3,4</td><td></td><td></td><td></td></l<>	<100	D	53A	5	i C	Q ₁	Q ₁	E	G	G	3,4			
Urea nitrate	$CH_5N_3O_4$		<10	<60	S	11	1	G	Q ₁	Q ₁	M2	G	G		kr	152(Z)	1,69
Urea phosphate	CH7N205P		<10	<60	S	11	1	G	Q ₁	Q ₁	M_2	G	G	Xi	kr	119	
Urea resins																	
(DIN 7728: abbr. UF)		G	-	<100	D	53A	1	Q	1 ₂₂ Q	l₁(V)	M ₂	G	G	3,4	ра		
Urine			-	<40	S	11	5	i C	Q1	Q ₁	Ε	G	G		fl		

Media De la ofractació la cont	Obamiaal			.	A				anical					1			ation on the me		Dowellar
Code of materials and legend see inside of back cover. Please observe	Chemical formula	Remark	Concentration %	Temp. °C	Arrange- ment	Auxil. piping	Addit. measures	Seal type		E	aterials N 127			Hazard warnings	TLV- value	l Do	Melting temperature °C	Boiling point °C	Density g/cm ³
the note on page 1.			Conce			Ā	Addit.		1 0	2 a	3	4	5			Normal (
									Seal face	Seal face	Sec. seal	Spring	Others						
1		2	3	4	5	6	7	8						10	11	12	13	14	15
v		-	-				-		-	-	-	-	-	_	-	-			
Varnishes		G	-	TG	D	53A		1	$Q_1(V)$	В	M ₁	G	G	3,4		fl			
Vaseline → <i>Petrolatum</i>			0	.150	<u> </u>				0.(0)	D	V	0	0						
Vegetable oils Vegetable mash		G	0	<150 <100	S S	11		1	$Q_1(S)$ $Q_1(S)$	B	V V	G G	G G			fl pa			
Vinyl acetate			-	< 100	3	11			u ₁ (3)	D	V	u	u			μα			
→ Acetic acid vinyl ester																			
Vinyl acetylene (Butenyne)	C ₄ H ₄	TA	-	<60	D	53A		1	$Q_1(V)$	В	M ₂	G	G	1,3		ga	-92	5	(+)
Vinylbenzene \rightarrow Styrene Vinyl chloride	C ₂ H ₃ CI	TA	-	<40	D	53A		1	$Q_1(V)$	В	M ₁	G	G	T,R45,F+,1	*	ga	-154	-14	(+)
Vinylidene chlorides	6211301			~40		JJA			u ₁ (v)	D	1	u	u	1,1140,111,1		ya	-104	-14	(1)
→ Dichloroethenes		6		< Kn	6	11		1	0 (6)	D	M	0	C	11		fl			
Volatile oils	I	S	-	<Кр	S	11	I	1	Q ₁ (S)	В	M ₁	G	G	U	I	fl	I		I
W																			
Walnut oil		Ν	-	<100	S	11		1	$Q_1(S)$	В	V	G	G			fl			~0,92
Washing lye		S	-	<Кр	S	11		1	$Q_1(S)$	B	M ₁	G	G			fl			
Washing lye, dirty Wastewater \rightarrow Water		S	-	<Кр	S	11		1	Q ₁	Q ₁	M ₁	G	G			fl			
Water from pressed fish		N	Sus	<60	S	02		1	Q ₁	Q ₁	v	G	G			fe			
Water glass			Guo			02			<u> </u>	~									
→ Sodium silicates																			
Water vapour (Steam)	H ₂ 0		-	<180	D	53A		1	$Q_1(S)$	В	E	G	G	1					
Water: Wastewater, sewage	H ₂ O																		
water, pH>6<10			-	<50	S	11		1	Q_1	Q_1	Р	G	G			fl			
Wastewater, sewage water, pH>3<10			_	<50	S	11		5	Q ₁	Q1	v	G	G			fl			
Drinking water,				.50	s						E	G	G			4			
industrial water Drinking water,			-	<50	3	11		1	Q ₁ (S)	В		u	u			fl			
industrial water			-	< 100	S	11			Q ₁ (S)	В	E	G	G	 		fl			
Hot water with additives Boiler feed water			As co Pleas	mpositions i e contact Ea	and applicati agleBurgman	ons va n.	ry consi	derabl	y, a geni	eral rec	commen	dation v	vould no	ot be adequate.					
Sea and brackish water			-	<50	S	11		5	Α	Q_1	V	М	М			fl			
Waxes		S	-	>F<180		11		1	$Q_1(S)$	В	V	G	G			ра			
Whale oil		N	-	<100	S	11		1	$Q_1(S)$	B	V	G	G			fl			
Whey Whiskey		N	-	<60 <30	S S	11 11		1	$Q_1(S)$ $Q_1(V)$	B	V E	G G	G G			fl fl			
White spirit		TA	-	<60	S	11		1	$Q_1(V)$	B	V	G	G	Xn,N		fl	<-15	153198	
Wine			-	<40	S	11		1	$Q_1(S)$	В	P	G	G			fl			
Wine vinegar \rightarrow Acetic acid																			
→ Acetic acia Wood oil (Tung oil)		N	-	< 80	S	11		1	$Q_1(S)$	В	v	G	G	Xi		fl	<0		0,890,93
Wood pulp, ground pulp \rightarrow Pulp, (cellulose)									-1107	J									-,- 5
Wood spirit \rightarrow <i>Methanol</i>																			
Wood tar		G	-	<100	S	11		1	$Q_1(S)$	В	M ₁	G	G	U		fl			0,901,11
Wood turpentine oil \rightarrow Tall oil																			
x																			
Xanthogenates		S	<10	<60	D	53A		1	Q ₁	Q ₁	M ₁	G	G	3,4		kr			
Xenon	Xe		-	<40	D	53A		1	$Q_1(S)$	B	P	G	G	1		ga	-112	-108	(+)
Xylenes (Dimethylbenzenes):	0.11			.00										V- V	100			107 110	0.00
technical Xylene (mixture) m-Xylene	C ₈ H ₁₀ C ₈ H ₁₀		-	<60 <60	S S	11		1	$Q_1(S)$ $Q_1(S)$	B B	M ₁ M ₁	G G	G G	Xn,Xi Xn,Xi	100 100	fl fl	-63 -48	137140 139	~0,86 0,866
o-Xylene	C ₈ H ₁₀		-	<60	S	11		1	$Q_1(S)$	В	M ₁	G	G	Xn,Xi	100	fl	-25	144	0,881
p-Xylene	C ₈ H ₁₀		-	<60	S	11		1	$Q_1(S)$	В	M ₁	G	G	Xn,Xi	100	fl	13	138	0,861
	I	1	1	I	I		I	I			I	I	I	I	I	I	1		I

Media								Mech	anical	Seal				Addi	tional ir	forma	ation on the me	dium	
Code of materials and legend see inside of back cover. Please observe	Chemical formula	Remark	Concentration %	Temp. °C	Arrange- ment	Auxil. piping	Addit. measures	Seal type			aterials N 127			Hazard warnings	TLV- value	Normal condition	Melting temperature °C	Boiling point °C	Density g/cm ³
the note on page 1.			laon			¥	ldit.		1	2	3	4	5			rma			
1		2	3	4	5	6	A	8	Seal face	Seal face	Sec. seal	Spring	Others	10	11	N 12	13	14	15
				-										1 10		12	10		10
γ																			
Yeast mash		N	-	<60	S	11		1	$Q_1(S)$	В	V	G	G			ра			
Yoghurt with fruits etc.		Ν	-	<60	S	11		5	Q ₁	Q ₁	V	G	G			ра			
Yoghurt without fruits etc.		N	-	<60	S	11		1	Q ₁	В	V	G	G			pa			
Z	_													_			_	_	
Zapon lacquer		TA	-	<60	D	53A		1	Q ₁ (V)	В	M ₁	G	G	Xn,3,4,F,N		fl			
Zinc chloride	ZnCl ₂		<l< td=""><td><25</td><td>S</td><td>11</td><td></td><td>5</td><td>Q₁</td><td>Q1</td><td>V</td><td>G</td><td>G</td><td>C,Xn,4,6,N</td><td></td><td>kr</td><td>318</td><td>732</td><td>2,91</td></l<>	<25	S	11		5	Q ₁	Q1	V	G	G	C,Xn,4,6,N		kr	318	732	2,91
	ZnCl ₂		<l< td=""><td><kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>C,Xn,2,4,N</td><td></td><td></td><td></td><td></td><td></td></kp<></td></l<>	<kp< td=""><td>D</td><td>53A</td><td></td><td>1</td><td>$Q_1(V)$</td><td>В</td><td>M₁</td><td>G</td><td>G</td><td>C,Xn,2,4,N</td><td></td><td></td><td></td><td></td><td></td></kp<>	D	53A		1	$Q_1(V)$	В	M ₁	G	G	C,Xn,2,4,N					
Zinc cyanide (suspension)	Zn(CN) ₂		<20	<kp< td=""><td>S</td><td>02</td><td>kD</td><td>3</td><td>Q₁</td><td>Q₁</td><td>Р</td><td>G</td><td>G</td><td>T+,N</td><td></td><td>kr</td><td>~800(Z)</td><td></td><td>1,852</td></kp<>	S	02	kD	3	Q ₁	Q ₁	Р	G	G	T+,N		kr	~800(Z)		1,852
Zinc nitrate	Zn(NO ₃) ₂ *6H ₂ O		<l< td=""><td><60</td><td>S,Q</td><td>62</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>V</td><td>G</td><td>G</td><td>Xn,6,0</td><td></td><td>kr</td><td>36</td><td>105131</td><td>2,065</td></l<>	<60	S,Q	62		5	Q ₁	Q ₁	V	G	G	Xn,6,0		kr	36	105131	2,065
Zinc oxide (suspension)	ZnO		< 50	<kp< td=""><td>S,Q</td><td>53A</td><td>kD</td><td>3</td><td>Q₁</td><td>Q₁</td><td>V</td><td>G</td><td>G</td><td>3,4,N</td><td>5 mg</td><td>kr</td><td>1975</td><td></td><td>5,606</td></kp<>	S,Q	53A	kD	3	Q ₁	Q ₁	V	G	G	3,4,N	5 mg	kr	1975		5,606
Zinc paints, water soluble			<l< td=""><td><60</td><td>S,Q</td><td>62</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>V</td><td>G</td><td>G</td><td>6</td><td></td><td>fl</td><td></td><td></td><td></td></l<>	<60	S,Q	62		5	Q ₁	Q ₁	V	G	G	6		fl			
Zinc phosphate	Zn ₂ (PO ₄) ₂		<10	<100	D	53A		1		В	M ₁	G	G	3,4,N		kr	>900		
Zinc sulfate (Zinc vitriol)	Zn ₂ SO ₄ -7H ₂ O		<l< td=""><td><60</td><td>S,Q</td><td>62</td><td></td><td>5</td><td>Q₁</td><td>Q₁</td><td>V</td><td>G</td><td>G</td><td>Xn,6,N</td><td></td><td>fe</td><td>100</td><td></td><td>1,97</td></l<>	<60	S,Q	62		5	Q ₁	Q ₁	V	G	G	Xn,6,N		fe	100		1,97

Mechanical seals

Mechanical seals for pumps

EagleBurgmann offers a complete range of liquid and gas-lubricated pump shaft seals including standard and engineered seals in single and multi-seal versions. We also offer a complete range of solutions for all API 682 categories and arrangements. The portfolio includes a broad selection of material and surface technologies such as DiamondFace coatings.

Cartridge seals

· Easy to install

- Inboard/outboard variants
- · For all standard modes of circulation
- · O-ring, metal bellows and elastomer bellows seals
- Gas-lubricated versions
- · Special versions, e.g. for sterile applications
- Split versions available
- Diameter: 20 ... 110 (250) mm
- (0.79" ... 4.33 (9.84)")
- Pressure: ... 42 (150) bar (... 609 (2,175) PSI) • Temperature: -40 °C ... +220 °C (-40 °F ... +428 °F)

Elastomer bellows seals

- Compact design
- Straightforward installation
- · Stationary and rotating designs
- · Approvals: e.g., FDA, WRAS, KTW, ACS, W270, NST
- Diameter: 6 ... 100 mm (0.24" ... 4")
- Pressure: ... 16 bar (... 230 PSI) Temperature: ... + 140 °C (... + 284 °F)

Component seals

- Designed for universal applications · Versions for high-viscosity media and media containing
- solids
- Versions for high-performance pumps
- Diameter: ... 400 mm (... 16")
- Pressure: ... 150 bar (... 2,176 PSI)
- Temperature: -50 °C ... +220 °C (-58 °F ... +428 °F)

Metal bellows seals

- For extreme temperature ranges
- For high-viscosity media and media containing solids Diameter: 16 ... 100 mm (0.62" ... 4")
- Pressure: vacuum ... 25 bar (... 363 PSI)
- •Temperature: -100 °C ... +400 °C
- (-148 °F ... +752 °F)

Other sizes and engineered seals on request.

Typical applications:

Centrifugal pumps, positive displacements pumps, high-performance pumps, multi-phase and slurry pumps, circulation pumps, hydraulic pumps

For detailed information please inquire.

Mechanical seals for agitators

Sealing solutions for normal and sterile applications. The design and selection of materials ensure that the seals are rugged enough to deliver excellent cost and engineering performance in all major applications.

Dry-running agitator seals

• Dry-running, contacting seal faces · For steel and glass lined vessels · DIN connections or according to customer request • No seal supply system needed • FDA-approved face materials • Diameter: 25 ... 200 mm (1" ... 7.87") Pressure: vacuum ... 6 bar (... 87 PSI) •Temperature: -20 °C ... + 250 °C (-4 °F ... +482 °F)

Gas-lubricated agitator seals

· For steel and glass lined vessels · DIN connections or according to customer request ·FDA-approved face materials Non-contacting operation Versions for sterile applications • Diameter: 40 ... 220 mm (1.58" ... 8.7") • Pressure: vacuum ... 14 bar (... 203 PSI) • Temperature: •40 °C ... +250 °C (•40 °F ... +482 °F)

Liquid-lubricated agitator seals

• For steel and glass lined vessels · DIN connections or according to customer request FDA-approved face materials · Designed for all applications • Diameter: 15 ... 500 mm (0.59" ... 19.69") • Pressure: vacuum ... 250 bar (... 3,626 PSI) • Temperature: -80 °C ... +350 °C (-112 °F ... +662 °F)

Mechanical seals for compressors

A complete range of products compressors from a single source. Single, double and tandem versions and tandem seals with intermedia labyrinths available.

DGS series

- Standard product series with a proven track record
- Diameter: 29 ... 264 mm (1.14" ... 10.39")
- Pressure: 0 ... 120 bar (0 ... 1,740 PSI)
- •Temperature: -20 °C ... + 200 °C (-4 °F ... + 392 °F)

PDGS high pressure seals

- · Elastomer-free, DLC-coated sliding faces
- Diameter: 29 ... 355 mm (1.14" ... 13.98")
- Pressure: 0 ... 450 bar (0 ... 6,526 PSI)
- Temperature: -170 °C ... +230 °C (-274 °F ... +446 °F)

MDGS series for screw compressors

- · Seat materials: ductile steel with DM-TiN coating
- · Diameter: 40 ... 280 mm (1.57" ... 8.66")
- Pressure: 0 ... 50 bar (0 ... 725 PSI)
- •Temperature: -20 °C ... +200 °C (-4 °F ... +392 °F)

TDGS series for steam turbines

- Metal bellows
- Diameter: 40 ... 140 mm (1.5" ... 5.5")
- Pressure: ... 10 bar (... 145 PSI)
- Temperature: -50 °C ... +450 °C (-58 °F ... +842 °F)

Separation seals CSR and CSE

 Very low gas consumption • Diameter: 29.5 ... 379.5 mm (1.16" ... 14.94")

CobaSeal separation seal

- Insensitive to oil contamination
- Low N2 consumption
- · Face materials: ductile steel with special EagleBurgmann
- high performance iDLC coating
- Diameter: 29.5 ... 210 mm (1.16" ... 8.27")
- Pressure: 0 ... 15 bar (0 ... 218 PSI)
- Temperature: -20 °C ... +50 °C (-4 °F ... +122 °F)

WRS oil-lubricated seals

- · Optimized design due to FEM and computational fluid dynamics
- Diameter: 30 ... 300 mm (1.18" ... 11.81")
- Pressure: ... 50 bar (725 PSI)
- •Temperature: -20 °C ... + 200 °C (-4 °F ... + 392 °F)

Typical applications:

Centrifugal compressors, expanders, turbines, integrally geared compressors, screw compressors, roots compressors, special machines

Typical applications: Agitators, mixers, dryers, kneaders, reactors, separators, filters

Magnetic couplings

Seal supply systems

Carbon floating ring seals

Uncompromising sealing technology for very demanding applications. Hermetically sealed magnetic couplings guarantee leakage-free and maintenance-free pumping and mixing.

The media remains within closed system circulation loops.

MAK series

- Modular design
- Integrated sliding bearing
- Compact dimensions
- Torque transmission ... 462 Nm
- Speed: 3,600 min-1
- Pressure: ... 40 bar (... 580 PSI)
- •Temperature: ... +250 °C (...+482 °F)
- · Versions for sterile agitator applications
- Optional ceramic or carbon PEEK can

NMB high-efficiency series

- Patented laminated can
- · Reduced eddy current losses
- Optional sliding bearing
- Torque transmission: ... 1,879 Nm
- Pressure: ... 45 bar (... 653 PSI)
- •Temperature: ... +250 °C (... +482° F)

LMF1 Bearing for magnetic couplings

- · Sliding bearing with ceramic or carbon materials for the shaft end of magnetic coupled pumps - Suitable for MAK66, MAK685 and NMB HE magnetic
- couplings and others
- · Self lubrication through pump liquid
- Compact dimensions
- · Version for increased usage conditions on request

Depending on the design, application and mode of operation, supply systems are required to flush, cool and pressurize mechanical seals and magnetic couplings and provide leakage compensation. EagleBurgmann supplies a complete range of solutions from a single source including design, production, commissioning and service. The portfolio includes a complete range of API compliant supply systems.

Quench systems

- · Versions with polyethylene or stainless steel tanks API 682 versions
- · Circulation of buffer fluid possible

Thermosiphon systems

· Comprehensive modularized product range Sterilizable versions · API 682 versions for Plan 52 and 53A

Heat exchangers

- · Comprehensive standard range
- Extremely efficient cooling
- Compact design
- API 682 versions

SPO (SPB/SPC) closed-circuit barrier fluid systems

- · Suitable for applications with high pressure
- · No connection to nitrogen supply necessary
- API 682 versions

SPA open-circuit buffer/barrier fluid systems

- · High cooling capacity
- · Combined supply of various seals

SPN refill units

· Manual, automatic and mobile versions

Gas supply systems

- · Customized versions for all types and requirements in
- gas-lubricated mechanical seal applications
- ·Seal management system
- API 682 / 614

RoTechBooster

• Ensures seal gas flow to the gas seal when the differential pressure across a compressor is insufficient to provide adequate flow.

For detailed information please inquire.

Centrifugal pumps, positive displacements pumps, vacuum pumps, agitators, mixers, compressors, blowers, special machines

Typical applications:

Liquid and gas lubricated mechanical seals, magnetic couplings

Carbon floating ring seals are supplied as maintenancefree compact labyrinth cartridge seals with low leakage. The floating self-adjusting sealing rings provide radial sealing on the shaft with a very small gap. The seal requires no additional lubrication, and it is designed for dry running. Besides pure gas, carbon floating ring seals are also suitable for Atex applications, toxic media, media containing solids, flue gas, dust, powder, vapor, liquid mist, oil mist and penetrating oil.

Espey WD series (split housing)

- · Split housing and seal rings allow easy installation
- Pressure: vacuum ... 20 bar (... 290 PSI)
- · Shaft diameter: 40 ... 340 mm (1.57" ... 13.39")
- Radial clearance: max. ±5.0 mm (0.2")
- · Axial movement: theoretically unlimited
- Temperature: -120 °C ... +800 °C (-184 °F ... +1,472 °F)
- Sliding velocity: 40 ... 150 m/s (131 ... 492 ft/s)

Espey WDK-BHS for bulkhead shaft penetrations

- · Split housing and seal rings allow easy installation
- Verified leakage rates
- International type approvals
- Pressure: max. 3 bar (44 PSI)
- Shaft diameter: 40 ... 800 mm (1.57" ... 31.5")
- •Radial play: max. 5 mm (0.2")
- · Axial movement: theoretically unlimited
- •Temperature: max. 225 °C (437 °F)
- Sliding velocity: 40 m/s (131 ft/s)

Special Espey WD series variants

- Seals for top driven agitators and DIN seal chambers
- Blast furnace seals, shaft ... 4,000 mm (... 157.48")
- · Seals for mills and centrifuge feed heads

Espev WKA series

- · Chamber seal (modular design can be combined in any order), optional with housing and lid
- Pressure: vacuum ... 250 bar (... 3,626 PSI)
- Shaft diameter: 20 ... 340 mm (0.79" ... 13.39")
- Radial play: max. ± 2.0 mm (0.08")
- · Axial movement: theoretically unlimited
- •Temperature: -120 °C ... +500 °C (-184 °F ... +932 °F) •Sliding velocity: 150 ... 240 m/s (492 ... 787 ft/s)

Espey shaft sleeves

- · Metallic or ceramic coating
- One-piece or split design
- Shaft diameter: 45 ... 340 mm (1.77" ... 13.39")

agitators, dryers, bulkheads, steam turbines, throttle/

51

•Temperature: ... +1,000 °C (...+1,832 °F)

Typical applications: Blowers, compressors, turbines, centrifuges, mills,

control valves, gear units, motors

Compression packings

A cost effective and reliable method for sealing pump shafts, valve spindles and rotating shafts in process equipment. Manufactured from a range of material combinations – traditional and innovative – using state-of-the-art production techniques. Supplied in boxed lengths or pre-cut rings. Approvals/certification includes BAM, DVGW, FDA, API, ISO, TA-Luft. Fire-safe, low leakage, low emission and nuclear grades are available with full documentation and certification.

Rotatherm graphite rings

An accepted industry-standard for valves and pumps in high pressure and high temperature service. Manufactured as moulded rings (with and without steel reinforcement) or special seals. Suits all industry applications including the power and nuclear industries. Approvals/certification includes: BAM, DVGW, API, ISO, TA-Luft.

BuraTAL Fugitive emission products

A comprehensive range of low leakage packing sets manufactured in graphite or our unique non-woven materials. All current fugitive emission standards are met with outstanding performance, low friction, ease of installation, and a long service life. Approvals/certification includes: API 622, ISO 15848, TA-Luft.

Burajet Injectable packings

The Burajet Injectable packing system offers a wide range of injectable compounds for pumps, valves, and process equipment. An ideal product for the mining and paper & pulp industries. Approvals/Certification includes: FDA

Buraglas Glass packings

Manufactured from non-ceramic materials and fibres, BuraGlas packings are suitable for sealing of vessels, coal mills, industrial furnaces, oven doors, hatches and covers. Produced in lengths in sizes up to 150 mm section. Approvals/Certification: Hydrolytische Klasse 1; DIN 12111.

Packing cartridges

Packing cartridges combine quick and easy installation with robust simple construction to provide minimum downtime and maximum reliability in critical process applications. Manufactured to individual requirements to fit into DIN/ASME standard equipment e.g. agitators. Cartridges can be supplied with live-loading and additional bellows containment for maximum environmental safety.

Gaskets

Fibre gasket sheets

Burasil-Basic, -Universal and Buratherm N gasket

sheets for service in low to medium pressure and temperature applications for process equipment and pipework in industry and for utility applications like gas and water supply. Approvals/certification includes: DVGW, KTW, HTB, WRAS, WRC, TA-Luft, BAM (Oxygen max. = $120 \,^{\circ}C / 130 \, \text{bar}$)

PTFE gasket sheets and tapes

Burachem is a highly chemical resistant modified PTFE gasket material range offering varying properties of mechanical strength and chemical resistance depending upon application. Approvals/certification includes: DVGW, KTW, HTB, WRAS, WRC, BAM (Oxygen max. =120 °C/130 bar), TA-Luft.

Quick-Seal MultiTex tape is the latest development in the field of expanded PTFE sealing materials for in-place sealing of vessel and pipe flanges.

Graphite seals and tapes

Statotherm Graphite gasket sheets, tapes

Soft, flexible, graphite gasket sheets ideal for pump, valve, and equipment gaskets. **Statotherm R Profile rings** for static sealing in high temperature applications, e.g. in heat exchangers, valves or pumps. **Statotherm V and V-Flex cover seals** are used as soft sealing agekets in high pressure valves of a far power plants at high temperature

self-sealing gaskets in high-pressure valves e.g. for power plants at high temperatures. Statotherm V-Flex is supplied by the meter.

Metal gaskets

Approvals/certification include BAM, DVGW, TA-Luft

Spiraltherm spiral wound gaskets. Available to suit all international flange standards and in a wide choice of materials.

Corratherm corrugated gaskets are for heavy duty applications. Kammprofile serrated gaskets are for applications with high demands for operating safety and tightness.

Buralloy metal jacketed gaskets are produced in a wide variety of different materials (in various combinations), in many styles for heat exchangers, pipe flanges, boilers, and process equipment.

Buralloy ring type joints are available to suit all ASME

and DIN flanges from stock. Sizes: 15 \dots 900 mm (0.5" \dots 36"); manufactured to ASME B16.20 and to API 6A.

Typical applications:

Pumps, agitators, mixers, kneaders, dryers, fans, blowers, filters, refiners, pulpers, mills, valves

Typical applications: Stationary machine parts, flanges, flange-like joints, bulkheads

For detailed information please inquire.

Expansion joints

Expansion joints are vital components in most industrial plants. They are installed as flexible connections in pipe and duct systems to take up or compensate for thermal expansion, vibration and misalignments. Advancements in processing and generating technologies are being combined with high demands for efficiency. This, along with a clear orientation towards environmental protection, puts high demands on expansion joint designs.

Customized expansion joints made of fabric or metal are the solution of choice.

Fabric expansion joints

- Single and multilayer designs
- Dimensions: according to customer specifications
- •Temperature -35 °C ... +1,000 °C (-31 °F ... + 1,832 °F)
- (higher temperature, on request) • Pressure: +/-0.35 bar
- Versions with wiremesh reinforcement
- Versions with high chemical resistance
- Versions with Nekal-tight design
- Fabric expansion joint are available as units, including bolster and steel parts.

Metal expansion joints

- Dimensions: Circular: DN40 and up.
- Rectangular: According to customer specifications
- •Temperature: -198 °C ... +1,371 °C (-324 °F ... + 2,500 °F)
- Pressure: vacuum ... 172 bar (... 2,500 PSI)
- Materials: stainless steel, ${\sf Incoloy}^{(\! R \!\!\!)}$ ${\sf Inconel}^{(\! R \!\!\!)}$, Hastelloy $^{(\! R \!\!\!)}$, titanium, special materials Single and universal designs
- Metal expansion joints are available with for example tie rods, hinges, gimbals, refractory lining, elbow, pantograph.

Dimensions and pressure range depends on design, material selection, type of expansion joint and duct insulation.

Special products

For particular applications, innovative, customized solutions are the only answer. The supplier must have a wealth of in-depth expertise, many years of experience and above all the willingness and ability to translate ideas into solutions that work in practical application.

Contoured diaphragm couplings

For demanding rotating equipment such as turbines and compressors in the oil and gas industries as well as petrochemicals, conventional and nuclear power generation, marine applications and the aerospace industry.

They are lightweight, easy to install and maintain, and demonstrate high reliability in stress analysis. Low bearing load, best dynamic balance repeatability and no fretting or wearing are advantages of the coupling. Uniquely shaped flexible elements in the metal diaphragms located at each end of the spacers attain optimum performance. Additional features:

-Couplings acc. to API 671 / ISO10441 or API 610 / ISO13709

- · Multi diaphragms, compensation for large misalignments
- -Low (reduced) moment
- Electrically insulatet
- Spark resistant materials
- •Tuned for rotor dynamics
- Torque overload releasing device
- Torque measuring system

Operating range: Max. torque: 2,700 kNm, max. speed: 100,000 min⁻¹

High-grade metal bellows

for specialized applications in the nuclear power, semi conductor and medical equipment industries, etc.

Dynamic and static sealing elements

for the aerospace industry which meet extremely demanding quality requirements.

Stern tube and marine seals

with various approvals and certifications, for marine outfitters and users.

Rotary kiln sealing systems

as single and double seals in drying, calcination, combustion and pyrolysis applications.

Typical applications: Air and flue gas ducts, pipelines, sewer systems Typical applications: Engineered solutions designed to meet customer requirements

Table of materials

Material code	9	Description				
1)EN 12756	EagleBurgmann					
Face mater	ials (Item 1/2)					
Synthetic c	arbons					
►A	Buko 03	Carbon graphite antimony impregnated				
►B	Buko 1	Carbon graphite resin impregnated, approved for foodstuffs				
B3	Buko 02	Carbon graphite resin impregnated				
B5	Buko 34	Carbon, resin bonded				
C	Buko 22	Electrographite antimony impregnated				
Metals						
►E	Bume 20	Cr steel				
G	Bume 17	CrNiMo steel				
► S	Bume 5	Special cast CrMo steel				
T41	Bube 281	1.4462 DLC-coated				
Carbides						
U = Tungste	n carbides					
► U1	Buka 1 brazed	Tungsten carbide, Co-binder				
► U2	Buka 16 solid	Tungsten carbide, Ni-binder				
► U22	Buka 16 shrunk-in	Tungsten carbide, Ni-binder				
U3	Buka 15 solid	Tungsten carbide, NiCrMo-binder				
U37	Buka 15 shrunk-in	Tungsten carbide, NiCrMo-binder				
U7	Buka 17 solid	Tungsten carbide, binder-free				
Q = Silicon d	carbides					
▶ Q1	Buka 22 solid	SiC, silicon carbide, sintered pressureless				
► Q12	Buka 22 shrunk-in	SiC, sintered pressureless				
► Q2	Buka 20 solid	SiC-Si, reaction bonded				
► Q22	Buka 20 shrunk-in	SiC-Si, reaction bonded				
Q3	Buka 30 solid	SiC-C-Si, carbon silicon impr.				
Q32	Buka 30 shrunk-in	SiC-C-Si, carbon silicon impr.				
Q6	Buka 32 solid	SiC-C, SiC sintered pressureless with carbon				
Q4	Buka 24 solid	C-SiC, carbon surface silicated				
Q19	Buka 221	SiC, DLC-coated				
Q15	Buka 225	SiC, DiamondFace				
Metal oxide	es (Ceramics)					
۷	Buke 5	Al-Oxide > 99 %				
V2	Buke 3	Al-Oxide > 96 %				
Х	Buke 8	Steatite (Magnesia silicate)				
Plastics						
► Y1	Buku 2	PTFE glassfibre reinforced				
Y2	Buku 3	PTFE carbon reinforced				

Material code		Description			
¹⁾ EN 12756	0 0				
	seal component	ts (Item 3)			
Elastomers	, not wrapped	E (1) (1)			
►E	E	Ethylene propylene rubber (EPDM ²⁾) e.g. Nordel [®]			
► K	К	Perfluorocarbon rubber (FFKM ²⁾) e. g. Kalrez [®] , Chemraz [®] , Simriz [®]			
Ν	Ν	Chloroprene rubber (CR ²) e. g. Neopren [®]			
►P	Р	Nitrile-butadiene-rubber (NBR ²⁾) e. g. Perbunan [®]			
S	S	Silicone rubber (VMQ ²⁾) e. g. Silopren [®]			
► V	V	Fluorocarbon rubber (FKM ²⁾) e. g. Viton®			
Х	X4	Hydrogenated Nitrile-rubber (HNBR ²⁾)			
Х	X5	Tetrafluoroethylene propylene rubber (FEPM ²⁾) e. g. Aflas [®] , Fluoraz [®]			
Elastomers	, wrapped	•			
► M1	TTV	FKM, double PTFE wrapped			
► M2	TTE	EPDM, double PTFE wrapped			
M3	TTS	VMQ, double PTFE wrapped			
M4	TTN	CR, double PTFE wrapped			
M5	FEP	FKM, FEP wrapped			
M7	TTV/T	FKM double PTFE wrapped/ PTFE solid			
Differing m	aterials				
U1	K/T	Perfluorocarbon rubber/PTFE			
Non-Elastomers					
G	Statotherm	Pure graphite			
T	T	PTFE (Polytetrafluoroethylene)			
T2	T2	PTFE glass fiber reinforced			
T3	T3	PTFE carbon reinforced			
T12	T12	PTFE carbon-graphite reinforced			
Y1	Burasil-U	Plastic fiber/Aramid			

	1					
Material code		Description				
	EagleBurgmann					
		terials (Item 4/5)				
Spring mate	1.4571	CrNiMo steel				
► G		Hastellov® C-4				
► M	2.4610	Nickel-base alloy				
Construction	n materials					
D	St	C steel				
►E	1.4122	Cr steel				
F	1.4301	CrNi steel				
F	1.4308	CrNi cast steel				
F1	1.4313	Special cast CrNi steel				
►G	1.4401	CrNiMo steel				
► G	1.4404	CrNiMo steel				
►G	1.4571	CrNiMo steel				
G	1.4581	CrNiMo cast steel				
► G1	1.4462	CrNiMo steel – Duplex				
G2	1.4439	CrNiMo steel				
G3	1.4539	NiCrMo steel				
► G4	UNSS32760-Nor	CrNiMoCu steel - Superduplex				
M = Nickel-b						
► M	2.4610	Hastelloy® C-4				
M1	2.4617	Hastelloy® B-2				
M3	2.4660	Carpenter® 20 Cb3				
M4	2.4375	Monel [®] alloy K500				
M5	2.4819	Hastelloy® C-276				
M6	2.4668	Inconel® 718				
T = Other ma	terials					
T1	1.4505	CrNiMoCuNb steel				
T2	3.7035	Pure titanium				
T3	2.4856	Inconel® 625				
T4	1.3917	Carpenter [®] 42				
T5	1.4876	Incoloy® 800				

Preferred materials

1) Standard following EN 12756, Dec. 2000

2) Abbreviations acc. to ISO 1629, Nov. 2004

Co	lor	cod	e

Housing, installation chamber

Stationary seal parts

Stationary seal faces

Rotating seal faces

Elastomers

Short legend for seal selection by media

		9		· · · ·				
Notes o	n the	medium (2)	Arrang	emen	t of shaft seal (5)	Mech	anical	seal type on product side (8)
G	=	Mixture/group	S	=	Single mechanical seal	1	=	with elastomer O-Rings, rotating
N	=	Natural product	D	=	Dual mechanical seal			springs in contact with the product
®	=	Trade mark	Q	=	Quench	2	=	same as 1 but springs not in
S	=	Collective term						contact with the product
TA	=	TA-Luft relevant	Auxilia	rv pip	ing (6)	3	=	same as 2 but stationary springs
V	=	Impurities	Arrange	ments	see API 682/ISO 21049	4	=	same as 2 but metal free on
								product side
Concent	tratio	n (3)	Auxilia	rv me	easures (7)	5	=	with elastomer bellows
_	=	"any"	D	=	Steam guench	6	=	with metal bellows
< 10	=	less than 10 weight %	(H), H	=	Heating (if necessary)	x	=	special design
~ 10	=		kD	=				
F10	=		SS	=		Mate	rial sel	ection (9)
L	=	Defined solution	SW	=				
< L	=	Unsaturated solution	QW	=		materi		
> L	=	Supersaturated sol.	ThE	=	Thermal buffer			
Sch	=	Melt						
Sus	=	Suspension						
Tempera	ature	(4)						
< 100	=	less than 100 °C						
> F	=	> Solidifying temp.						
> K	=	> Crystallization temperature						
< Kp	=	< Boiling temperature						
> Pp	=	> Pour point						
TG	=	< Material temperature limit						
F10 L > L Sch Sus Temper < 100 > F > K < Kp > Pp	= = = = ature = = = =	approx. 10 % Solids up to 10 % Defined solution Unsaturated solution Supersaturated sol. Melt Suspension (4) less than 100 °C > Solidifying temp. > Crystallization temperature < Boiling temperature > Pour point	kD SS SW QW	= = =	Conical stuffing box Splash guard Replacement of buffer medium Replacement of quench medium	For de	signatio	ection (9) Ins acc. to EN 12756 see table of

 Health hazard warnings (10)

 T
 =
 Toxic

 T+
 Very Toxic.
 Yery Toxic.

 Xn
 =
 Harmful

 R..
 =
 Carcinogenic/mutagenic

 Xi
 =
 Irritant

 C
 =
 Corrosive

 1
 =
 Vapor pressure/gas

 2
 =
 Corrosion

 3
 =
 Exclusion of air
 Exclusion of air = Lubricating properties =

Lubricating properties loing Leakage Highly flammable Extremely flammable Oxidizing Explosive Despervise = = =

Dangerous Insufficient information

= TLV (11) a fig. = mg = # = * -

=

_

=

5 6 F F 0 E N U

TLV in ppm TLV in mg/m³ mg/m³ of base substance No TLV because it is dearly carcinogenic

Normal condition (12) ga = Gaseous fe = Solid fl = Liquid ga fe fl kr pa

=

Crystalline Viscous

K ... S%

- Melting point (13)

 K ... =
 Efflorescence temperature

 S ... =
 Sublimation temperature

 ...% =
 Values for ...% aqueous solution

- Boiling point (14)

 A ... =
 Boiling point of the azeotrope

 Z =
 Decomposition temperature

 (...) =
 Reference pressure in mbar

 ...% =
 Values for ... % aqueous solution

Density (g/cm³) (15) (+)

(+)	=	Heavier then air
(-)	=	Lighter than air
()	=	Reference temp. in °C
À	=	Density of the azeotrope at
%	=	Values for % aqueous solut

- Density of the azeotrope at ... % Values for ... % aqueous solution =

TotalSealCare service modules

The modular seal service offered through TotalSealCare is as individual as are the demands of our customers. The range of services spans complete maintenance of all installed seals, through to stock management, as well as engineering, training and electronic data documentation.

Our TotalSealCare services consist of individual modules from which we assemble individualized service packages.

You can benefit from our many years of experience and expertise in all areas of seal technology, and our major store of practical knowledge.

Consulting & engineering

After establishing and analyzing all of the seals in a system, we work out standardization concepts based on the as-is status. The results we are hoping for are to reduce the number of seal types, sizes and materials used, and to improve the key figures of the system. We advise you relating to codes of practice and statutory regulations, and indicate what actions need to be taken.

Maintenance

In the plant or in the service center, qualified fitters and technicians look after all the aspects of seal maintenance: installation, startup, servicing, conversion, overhaul and repair. We record and document functionally relevant data (fault causes, measures for repair, costs). This means it is possible to assess seal operating times and maintenance costs on a continuous basis, thereby defining measures for extending service intervals.

On-site service

Our on-site service includes the components of an overhaul service, conversions and service container. We deploy a service unit directly on your premises: equipped with the basic suite of seals or a stock of seals discussed with you in advance, and staffed by qualified personnel. On-site, our work includes producing the necessary gaskets, ensuring that the documentation is complete and advising our customers on selecting and installing seals. Our range of services is rounded off by complete conversions (e. g. acc. to TA-Luft).

Inventory management

Based on your individual requirements and the applicable quality regulations, we develop a concept for inventory management of complete seals and spare parts. Furthermore, we optimize stocking on site or in the EagleBurgmann service center. In this way, you can reduce your administration overhead and concentrate on your key operations.

Seminars & training

We offer an extensive range of continuing education programs in seal technology. For service and maintenance personnel, skilled staff and engineers from various branches of industry such as refining, chemicals, power generation, foodstuffs, paper and pharmaceuticals. Our range includes group seminars, individual training and seminars specifically tailored to your requirements. At our premises or at a location of your choice.

Technical analysis & support

A team of seal specialists is responsible for rectifying process malfunctions or "bad actors". The latest methods such as thermography or data logging are used for diagnosing positions that are critical for the operation of the system and for working out measures to rectify them. In our research and development centers, we perform realistic tests on test rigs or in original pumps. The objective is to extend the MTBF and to increase system serviceability by individual and constructive solutions.

Service agreements

We offer our customers specific agreements that can be combined from the six service modules. Whether for individual seal systems, critical process elements, specific system areas or an extensive seal service for complete plants: the modular structure of our service makes it possible to satisfy individual requirements. With our tried-and-tested monitoring instrument, SEPRO, we can also record all data relevant for the seals for documentation and evaluation purposes. Algeria · Angola · Argentina · Australia · Australia · Azerbaijan · Bahrain · Bangladesh · Belarus · Belgium · Botswana · Brazil · Bulgaria · Cameroon · Canada Chile · China · Colombia · Congo · Cyprus · Czech Republic · Denmark · Ecuador · Egypt · Estonia · Finland · France · Gabon · Germany · Ghana · Great Britain Greece · Hungary · India · Indonesia · Iraq · Ireland · Israel · Italy · Ivory Coast · Japan · Jordan · Kazakhstan · Kenya · Korea · Kuwait · Latvia · Lebanon · Libya Lithuania · Madagascar · Malaysia · Mauritius · Mexico · Morocco · Myanmar · Namibia · Netherlands · New Zealand · Nigeria · Norway · Oman · Pakistan Paraguay · Peru · Philippines · Poland · Qatar · Romania · Russia · Saudi Arabia · Serbia · Singapore · Slovak Republic · Slovenia · South Africa · Spain · Sudan Sweden · Switzerland · Taiwan · Thailand · Trinidad and Tobago · Tunisia · Turkey · Ukraine · United Arab Emirates · Uruguay · USA · Venezuela · Vietnam Yemen · Zambia · Zimbabwe · www.eagleburgmann.com/world

EagleBurgmann, a joint venture of the German Freudenberg Group and the Japanese Eagle Industry Group, is one of the internationally leading companies for industrial sealing technology. Our products are used everywhere where safety and reliability are important: in the oil and gas industry, refining technology, the petrochemical, chemical and pharmaceutical industries, food processing, power, water, mining, pulp & paper, aerospace and many other spheres. Every day, more than 6,000 employees in more than 60 subsidiaries contribute their ideas, solutions and commitment towards ensuring that customers all over the world can rely on our seals. Our modular TotalSealCare service underlines our strong customer orientation and offers tailor-made services for every application.

eagleburgmann.com

info@eagleburgmann.com

